
Search for:

Home
About
XTF Implementations
XTF Community
Tutorial

Quick Start
Fundamental Concepts
First Steps
The Essentials
The Exercises

Exercise 1: Add new content
Exercise 2: Change metadata
Exercise 3: Change logo/colors
Exercise 4: Results ranking
Exercise 5: Customize search
Exercise 6: Modify results
Exercise 7: Strucutral searching
Exercise 8: Hierarchical facets
Exercise 9: Change footnotes

Documentation
Change Log
Deployment Guide
Programming Guide
Tag Reference
Tips & Tricks
Under the Hood
Experimental Features
Undocumented Features
Resources

Rowan Brownlee’s Beginner’s Guide to XTF
XTF Stylesheet Hierarchy

FAQ
Download
Support

Tag Reference

XTF Tag Reference
This page provides a reference for the tags, parameters, and utilities usable in XSLT stylesheets in various
parts of the eXtensible Text Framework (XTF). This document assumes that you are familiar with the general
organization of the XTF system as described in the XTF Programmer’s Guide. Here are the available sections:

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

1 of 66 3/15/2011 9:04 AM

textIndexer
Document Selector

Input Tags
Output Tags

PreFilter
Output Attributes

crossQuery
Common to crossQuery and dynaXML

Stylesheet parameters
Parser Input Tags
Error Generator Stylesheet
Utilities

Query Router and Query Parser Tags
Common Input Tags and Parameters
Query Router Output Tags
Query Parser Output Tags

Search Result Formatter
Input Tags

Error Generator
Input Tags

dynaXML
Common to crossQuery and dynaXML

Stylesheet parameters
Parser Input Tags
Error Generator Stylesheet
Utilities

Document Request Parser
Input Tags and Parameters
Output Tags

Document Formatter
Error Generator

textIndexer

return to top

This section details the XTF specific tags for the textIndexer stylesheets. There are two kinds of tags: 1)
Document Selector tags and 2) PreFilter tags.

1. Document Selector

The following input and output tags make up the XML input for the Document Selector stylesheet. They
constitute a simple XML representation files found in one (sub-) directory of the document library.

Input Tags
Directory Tag
This tag is the outermost tag for the XML input fragment sent to the Document Selector
stylesheet for translation. It has the form:

<directory dirPath="DirectoryPath">
 File

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

2 of 66 3/15/2011 9:04 AM

 File
 …
 File
</directory>

where

dirPath="!DirectoryPath" is the absolute file path to the directory on disk.

File, File...
is zero or more File Tags (see below) , one for each file found in
the directory.

File Tag
This tag is the input to the Document Selector stylesheet for each file found in the containing
<directory...> tag. It has the form:

<file fileName="FileName"/>

where

fileName="!FileName"
is the name of a file found in the directory identified by the containing
<directory...> tag. Note that this file name does not contain any
path information for the file, but only the file name itself.

Output Tags
Index List Tag
This tag is the outermost tag for the XML output fragment issued by the Document Selector
stylesheet. It has the form:

<indexFiles>

 FileToIndex
 FileToIndex
 …
 FileToIndex

</indexFiles>

where

FileToIndex,
FileToIndex…

is zero or more File To Index Tags (see below), one for each file to
index in the directory.

File To Index Tag

One copy of this tag should be output by Document Selector stylesheet for each file that must
be indexed. It should appear within an Index List Tag container (see above). It has the form:

<file fileName = "FileName"
 {format = "FileFormat"}
 {preFilter = "PreFilterPath(s)"}
 {displayStyle = "DocumentFormatterPath"}/>

where

fileName="FileName"
is a required attribute that specifies the name of a
file to be indexed. Note that this file name should
not contain any path information for the file, but

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

3 of 66 3/15/2011 9:04 AM

only the file name itself.

format="FileFormat"

is an optional attribute that specifies the format of
a file to be indexed. Currently XML, PDF, HTML
plain text, and most Microsoft Word files are
handled by the textIndexer, and the format
attribute should correspondingly be set to XML,
PDF, HTML, Text, or MSWord. If this attribute is
omitted, the textIndexer will try to infer the file
type based on the file extension.

preFilter="PreFilterPath(s)"

is an optional attribute that specifies the path to
the Pre-Filter stylesheet to be applied to this file.
If this path is not specified as an absolute path, it is
assumed to be relative to the XTF base installation
directory (i.e., XTF_HOME.) Multiple pre-filters
may be specified in a list; they should be separated
by “;” or “,” characters. The pre-filters will be
applied in the order listed (e.g. the original file is
sent to the first pre-filter; its output is sent to the
second pre-filter, whose output is sent to the third,
etc.) If this attribute is omitted, no pre-filter will be
applied to the file.

displayStyle="DocumentFormatterPath"

is an optional attribute that specifies path to the
Document Formatter stylesheet to use for this
file. If this path is not specified as an absolute
path, it is assumed to be relative to the XTF base
installation directory (i.e., XTF_HOME.) If this
attribute is present, the textIndexer will create a
special cache that is used by the dynaXML servlet
to display the current file more quickly. If this
attribute is omitted, the cache is not created. For
more details, see the discussion of Lazy Document
Handling in the XTF Under the Hood guide.

2. Pre-Filter

Output Attributes

This section summarizes the attributes defined for the Pre-Filter stylesheet to output which have
meaning for the textIndexer tool.

Index/No-index Attribute

<xsl:attribute name="xtf:index" select="'TrueOrFalse'"/>
<xsl:attribute name="xtf:noindex" select="'TrueOrFalse'"/>

This attribute is used to turn on/off indexing for a tag in a source document. The noindex variant
is simply a logical inverse of the index variant. Both are provided as a convenience to the
programmer.

The value for either of these tags should be set to either the string ‘true‘ or the string ‘false‘.
(Note: If not explicitly set, nested sub-tags for a document inherit the index/noindex state from

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

4 of 66 3/15/2011 9:04 AM

the closest parent tag for which an index state is defined.)

This attribute can be used for normal text blocks, and also on blocks marked as metadata using
the xtf:meta attribute below. In both cases, it controls whether the given block of text, or
meta-data field, is added to the index. In the case of meta-data, a field that isn’t added to the
index will still be made available to the Result Formatter stylesheet when crossQuery results are
displayed.

Meta-Data Attribute

<xsl:attribute name="xtf:meta" select="'TrueOrFalse'"/>

This attribute is used to mark the contents of a tag as being part of the meta-data for a document
rather than main-body text for the document.

The select value for this tag should be set to either the string ‘true‘ (text in tag is meta data) or
the string ‘false‘ (text in tag is not meta data.)

The entire tag and its contents will be treated as meta-data and will be added to the index using
the element name as the name of the meta-data field. That is, the tag will be indexed separately
from the full text of the document.

Other attributes of the tag, and any embedded element tags, will be stored in the index and will
be passed verbatim to the Result Formatter stylesheet to be used for output purposes. Of course
the text of the element and any sub-elements will be searchable, but the actual attributes and
element tags themselves cannot be searched for.

Note: If you mark a section of text with the xtf:meta attribute, it will not be included in the full
text index of that document (accessed by querying the text field). If you want a given piece of
text to appear in both the meta-data and full-text indexes, make two copies of it, marking one
with xtf:meta and not marking the other.

Store Attribute

<xsl:attribute name="xtf:store" select="'TrueOrFalse'"/>

This attribute is used to turn on/off whether to store the contents of a meta-data field in the
index, and make them available to the Result Formatter stylesheet.

The value for either of these tags should be set to either the string ‘true‘ or the string ‘false‘. If
not specified, this attribute defaults to ‘true‘.

This attribute can only be used on meta-data blocks that also have the xtf:meta attribute set.
Setting xtf:store to ‘false‘ can make the final index smaller, and can also speed up processing by
the Result Formatter stylesheet, since it will have less data to process. A field can be indexed
and stored, indexed and not stored, or stored and not indexed; all of these combinations can be
useful in certain circumstances.

Tokenize Attribute

<xsl:attribute name="xtf:tokenize" select="'YesOrNo'"/>

This attribute is used to indicate whether a meta-data field should be tokenized or not. By
default, meta-data fields are tokenized so they can be searched. If you intend to use a meta-data

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

5 of 66 3/15/2011 9:04 AM

field for sorting query results instead, set this attribute to ‘no‘ .

Proximity Break Attribute

<xsl:attribute name="xtf:proximitybreak" select="'TrueOrFalse'"/>

This attribute introduces a proximity break into a document. A tag marked with a proximity
break attribute is considered to be infinitely far away from the previous or containing tag. Using
this tag prevents proximity matches that span two adjacent tags from being counted as a valid
match.

The select value for this tag should be set to either the string ‘true‘ (introduce a proximity break)
or the string ‘false‘ (do not introduce a proximity break.)

To de-emphasize rather than disallow proximity matches across sections, use the sectionBump
attribute instead (see below).

Sentence Bump Attribute

<xsl:attribute name="xtf:sentenceBump" select="BumpInWords"/>

This attribute de-emphasizes proximity searches that span multiple sentences by introducing
extra virtual spacing between adjacent sentences. The amount of virtual spacing to add between
the end of the previous sentence and the beginning of the current one is specified as a number of
virtual words by the BumpInWords argument. This value, if not specified, defaults to five words
of added spacing.

(Note: If not explicitly set, nested sub-tags for a document inherit the sentence bump value from
the closest parent tag for which a sentence bump value is defined.)

Section Type Attribute

<xsl:attribute name="xtf:sectionType" select="'TypeName'"/>

This attribute assigns a section type name to a tag, with the TypeName parameter identifying the
section name to use. Assigning a section name to a tag allows grouped searches to be performed
on tags that have the same section names, by inserting a Section Type Tag into a query.

(Note: If not explicitly set, nested sub-tags for a document inherit the section type name from the
closest parent tag for which a section name is defined.)

Section Type Add Attribute

<xsl:attribute name="xtf:sectionTypeAdd" select="'TypeName'"/>

This attribute appends a section type name to the section type already associated with a tag (or
one of its ancestors which has a section type), with the TypeName parameter identifying the
section name to append. Assigning a section name to a tag allows grouped searches to be
performed on tags that have the same section names, by inserting a Section Type Tag into a
query. And appending a section type allows child tags to inherit their parent’s sectionType and
then add additional type information. This can be very useful for representing hierarchical
information using section types.

(Note: If not explicitly set, nested sub-tags for a document inherit the section type name from the

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

6 of 66 3/15/2011 9:04 AM

closest parent tag for which a section name is defined, including any section type which has been
appended to that parent tag.)

Section Bump Attribute

<xsl:attribute name="xtf:sectionBump" select="BumpInWords"/>

This attribute de-emphasizes proximity searches that span multiple sections by introducing extra
virtual spacing between adjacent sections. The amount of virtual spacing added between the end
of the previous section and the beginning of the current one is specified as a number of virtual
words by the BumpInWords argument. This value, if not specified, defaults to zero words of
added spacing.

Word Boost Attribute

<xsl:attribute name="xtf:wordBoost" select="BoostValue"/>

This attribute boosts or de-emphasizes the relevance of text found within a particular tag. To
boost the relevance of text in a tag, set the BoostValue parameter to a floating-point number
greater than 1.0. To de-emphasis the relevance of a tag’s text, set the BoostValue parameter to a
floating-point number between 0.0 and 1.0.

(Note: If not explicitly set, nested sub-tags for a document inherit the boost value from the
closest parent tag for which a boost value is defined.)

crossQuery

return to top

This section details the parameters, input tags, output tags, and utilities used in programming the crossQuery
servlet.

1. Common to crossQuery and dynaXML

Stylesheet parameters
This section summarizes the standard set of XSL parameters available to every stylesheet used by the
crossQuery and dynaXML servlets. These include the original URL of the current request (in a few
handy forms), the XTF base directory, and headers from the HTTP request.

Request URL
This field identifies the full URL passed to the XTF system for the current request. The request
URL is always available to servlets (unlike many of the following parameters which are optional).
It is accessed via the XSL parameter

<xsl:param name="http.URL"/>

This parameter contains a URL string of the form: http://yourserver/yourport/servlet
/queryparms

where

yourserver is the name of your XTF server
yourport is the port through which XTF requests are routed (typically 8080)

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

7 of 66 3/15/2011 9:04 AM

servlet is the name of the servlet to which the request is being sent. Normally, this is either
search (for crossQuery) or view (for dynaXML)

queryparms
is the list of parameters that defines the actual request being sent to the servlet. All
URL escape codes (such as %20 for space) will have been translated to normal
characters, and UTF-8 octet sequences will have been decoded.

Request URL with Original Unescaped Percent Codes

This field identifies the full URL passed to the XTF system for the current request, with all of the
percent codes left unescaped. The request URL is always available to servlets (unlike many of
the following parameters which are optional). It is accessed via the XSL parameter

<xsl:param name="http.rawURL"/>

This parameter contains a URL string of the form: http://yourserver/yourport/servlet
/queryparms

where

yourserver is the name of your XTF server
yourport is the port through which XTF requests are routed (typically 8080)

servlet is the name of the servlet to which the request is being sent. Normally, this is either
search (for crossQuery) or view (for dynaXML)

queryparms

is the list of parameters that defines the actual request being sent to the servlet. All
URL escape codes (such as %20 for space) will be left unescaped (i.e. not
translated to normal characters) and UTF-8 octet sequences will not have been
decoded.

Servlet Directory

This field identifies the filesystem path (directory) of the XTF instance in which the stylesheet is
running. It is accessed via the XSL parameter

<xsl:param name="servlet.dir"/>

Typically this value comes from the servlet container (e.g. Resin or Tomcat), but may be
overridden by specifying a base-dir parameter in the servlet container configuration. As this
varies by container, check the documentation for your servlet container if you wish to override
this value.

Servlet URL

This field identifies the URL used to access the servlet. It is accessed via the XSL parameter

<xsl:param name="servlet.URL"/>

This parameter contains a URL string of the form: http://yourserver{:yourport}/xtf/servlet

where

yourserver is the name of your XTF server
yourport is the port through which XTF requests are routed (typically 8080)

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

8 of 66 3/15/2011 9:04 AM

servlet is the name of the servlet to which the request is being sent. Normally, this is either
search (for crossQuery) or view (for dynaXML)

Note that the query string is not included in this parameter; if you need to access the query string,
use the Request URL parameter above.

Root URL

This field identifies the URL of this particular instance in the servlet container. The value is
useful for accessing icons and other non-servlet resources from the container. It is accessed via
the XSL parameter

<xsl:param name="root.URL"/>

This parameter contains a URL string of the form: http://yourserver{:yourport}/xtf/
where

yourserver is the name of your XTF server
yourport is the port through which XTF requests are routed (typically 8080)

Note that the servlet name and query string are not included in this parameter; if you need to
access these, use the Request URL parameter or the Servlet URL parameter, above.

User-Agent Header Field

This optional HTTP header field identifies the browser that issued the current request. It is
accessed via the XSL parameter

<xsl:param name="http.user-agent"/>

This parameter contains a string that identifies the browser that made the current request. Most
HTTP requests will provide this field. For example:

Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt; empas)

Note that the contents of this field vary widely depending on which browser made the request,
and a detailed description is beyond the scope of this document.

Referer Field

This optional HTTP header field identifies the web page from which the request URL was issued.
It is accessed via the XSL parameter

<xsl:param name="http.referer">

This parameter holds a URL string identifying the web page that issued the request. Often the
initial request to the servlet will supply this parameter; subsequent requests will not.

If-Modified-Since Header Field

This optional HTTP header field identifies the last time a particular request URL was issued by a
browser. This field can be used by an XTF stylesheet to determine if a request needs to be
processed because the XTF database has changed, or whether the requesting browser can use its

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

9 of 66 3/15/2011 9:04 AM

previously cached results. This field is accessed via the XSL parameter

<xsl:param name="http.if-modified-since"/>

Most HTTP responses will not include this parameter, but if they do, the contents of this time
string of the form:
weekday, dd-mmm-yy hh:mm:ss timezone
where

weekday is the day of the week the request was last issued
dd-mmm-yy is the day, three letter month abbreviation, and year the request was last issued
hh:mm:ss is the time the request was last issued, represented as a 24 hour GMT based time
timezone is the offset in hours of the timezone from which the request was last issued.

Other HTTP Headers

All HTTP header fields are made available to stylesheets in a similar fashion to the fields detailed
above. In general they are accessed via XSL parameters like this:

<xsl:param name="http.field-name">

where field-name is the name of the HTTP header field. Note that most HTTP header fields will
be absent most of the time.

Pass-Through Configuration Parameters

Any unrecognized tag present in the configuration file for a given tool (i.e. textIndexer.conf
for the textIndexer, dynaXML.conf for the dynaXML, etc.) will be made available to stylesheets
run by that tool. These can be accessed by declaring an XSLT parameter containing the element
name and the attribute name:

<xsl:param name="ElementName.AttributeName/>

For a concrete example, see the Programming Guide.

Parser Input Tags

The following tags make up the XML input for the Query Router, Query Parser, and Document
Request Parser stylesheets. They constitute a simple XML representation of the query URL supplied
to the crossQuery or dynaXML servlet.

Container Tag

This tag is the outermost tag for the XML input fragment sent to the router or parser stylesheet
for translation. It has the form:

<parameters>
 ParameterBlock
 ParameterBlock
 …
</parameters>

Parameter Block Tag

This tag is the XML input to the parser for a single parameter in a user query URL. It has the

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

10 of 66 3/15/2011 9:04 AM

form:

<param name="ParamName" value="ParamValue">
 Token | Phrase
 Token | Phrase
 …
</param>

where

name=“ParamName” is the name of the parameter extracted from the original query URL.

value=“ParamValue” is the original text in the query URL that is assigned to the specified
parameter.

Note that each of the parameters from the query URL is also available as a standard XSL
parameter with the form:

<xsl:param name="ParamName" select="DefaultValueIfNotInURL"/>

This allows query parameters to be accessed either through the standard template driven XML or
through stylesheet parameters.

Token Tag

This tag identifies a single word or token taken from the query URL. It has the form:

<token value="Word" isWord="YesOrNo"/>

where

value=“Word” is the actual word or symbol extracted from the URL.

isWord=“YesOrNo” identifies whether the token is a word (isWord="yes") or a punctuation
symbol (isWord="no".)

Phrase Tag

This tag identifies a literal phrase taken from the query URL. It has the form:

<phrase value="StringOfWords">
 Token
 Token
 …
</phrase>

where

value=“StringOfWords” is the entire phrase extracted from the URL as a single string.

Token, Token… is the original phrase broken down into one or more Token Tags (see
above), one for each word or symbol in the phrase.)

Error Generator Stylesheet

The purpose of the Error Generator stylesheet is to generate a web-page that displays user friendly
messages when crossQuery or dynaXML errors occur. Since its output is simply HTML, the only tags
that this reference section covers are the input XML tags passed to the Error Generator by the

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

11 of 66 3/15/2011 9:04 AM

servlets.For convenience, all of the error information passed into the Error Generator stylesheet as
XML tags is also available in the following XSLT parameters:

$exception
A string containing the name of the exception that occurred. This will be the name of
one of the error/exception tags listed below (e.g., ExcessiveWork, TermLimit, etc.)

$message The descriptive message for the error/exception (if any; may be an empty string.)

$stackTrace
The HTML-Formatted Java Stack Trace generated by the exception, (if any; may be an
empty string.)

Query Format Error Tag

This error tag is issued by the Query Parser or Document Request Parser stylesheet if its code
determines that there is an error in the query URL received from the user. It has the form:

<QueryFormat>
 <message>Error Message</message>
</QueryFormat>

To generate such an error, the Query Parser simply issues a

<error message="Error Message"/>

tag instead of a query tag. The error message specified by the parser’s error tag is then
transferred to the Query Format Error Tag, for processing by the servlet’s Error Generator
stylesheet.

Term Limit Error Tag

This error tag is issued by the Query Parser or Document Request Parser stylesheet if the
number terms or clauses in a query exceeds the maximum term limit established by the
termLimit attribute of the query tag produced by the Query Parser. It has the form:

<TermLimit>
 <message>Error Message</message>
</TermLimit>

This error is most often generated by the expansion of wildcard and range queries.

Excessive Work Error Tag

This error tag is issued by the Query Parser or Document Request Parser stylesheet if a query
exceeds the maximum work limit established by the workLimit attribute of the query tag
produced by the Query Parser. It has the form:

<ExcessiveWork>
 <message>Error Message</message>
</ExcessiveWork>

Invalid Document Error Tag

This error tag is issued by the dynaXML servlet if a document requested by the Document
Request Parser stylesheet (in the <source> tag) cannot be located. This tag has the form:

<InvalidDocument>
 <message>Error Message</message>

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

12 of 66 3/15/2011 9:04 AM

 <docId>Document Identifier</message>
</InvalidDocument>

Usually, this error is generated when a request is made for a document that doesn’t exist (for
instance, it might have been removed, or the document ID might be invalid.)

No Permission Error Tag

This error tag is issued by the dynaXML servlet if the authentication (specified by the Document
Request Parser stylesheet) fails for some reason. For instance, if IP-based authentication has
been specified, and the requestor’s IP address isn’t in the IP list, this error will be issued. This tag
has the form:

<NoPermission>
 <message>Error Message</message>
 <ipAddr>IP Address</message>
</NoPermission>

Note that the IP address will only be included for requests that failed during IP-list authentication
(and not for LDAP or external authentication, for example.)

Unsupported Query Error Tag

This error tag is issued by the dynaXML servlet if a document request issued by the Document
Request Parser stylesheet specifies a text query, and the document being queried is not present
in the index. Searching can only be performed on documents that have been indexed. This tag
has the form:

<UnsupportedQuery>
 <message>Error Message</message>
</UnsupportedQuery>

Usually, this error is generated when a query tag has been used in a document request without the
required index tag.

General Exception Error Tag

This error tag is generated whenever an internal exception occurs in any Servlet. This tag looks as
follows:

<GeneralExceptionName>
 <message>Error Message</message>
 <stackTrace>HTML-Formatted Java Stack Trace</stackTrace>
</GeneralExceptionName>

Exceptions are usually generated by anomalous fatal conditions like missing required files,
corrupted indexes, files locked by other applications, or bugs in the XTF code itself.

Utilities

The following utilities are available to dynaXML and crossQuery stylesheets:

Raw Dump Mode

The raw URL parameter can be helpful when debugging a Search Result Formatter or
Document Hit Formatter stylesheet. When specified, the servlet (either crossQuery or

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

13 of 66 3/15/2011 9:04 AM

dynaXML) will dump the formatter input directly to the browser, bypassing the formatter
stylesheet. The raw dump can help in formulating templates to correctly format the final output.

This parameter is added to a query URL, and has the form:
http://yourserver{:yourport}/xtf/search?queryParameters;raw=YesOrNo

or
http://yourserver{:yourport}/xtf/view?viewParameters;raw=YesOrNo

where

YesOrNo

specifies whether or not raw XML search results are sent to your browser. If set to
yes , the formatter stylesheet is disabled for the query, and raw XML search results or
marked up document contents are sent to your browser. If set to no , the XML is sent
to the formatter stylesheet for processing, and its output in turn is sent to the browser.
If this URL parameter is not specified, it defaults to no.

Session State

XTF is capable of tracking variables associated with a particular browsing session. This section
details the functions available to any crossQuery or dynaXML stylesheet for storing and
retrieving session data.

Store Session Data FunctionThis function can be called within a stylesheet to set a
name/value pair in the session data, like this:

<xsl:value-of select="session:setData(Name, Value)"/>

where

session:
is a namespace prefix to differentiate this function from any other. The
namespace URI for this prefix must be: java:org.cdlib.xtf.xslt.Session.

Name specifies the name under which to store the value in the session data.

Value
specifies the particular value to store. It may be either a string, or a structured
piece of XML with a single outer-level element (and any number of inner
elements.)

This function searches the session data for a value with a matching name. If found, the old
value is replaced with the specified one. If not found, a new name/value pair is added to
the session data.

Note that session tracking must be enabled in the servlet configuration file before calling
session:setData; if it not, a runtime error will be generated and processing will stop. By
default session tracking is enabled; see the XTF Deployment Guide for more information
on enabling or disabling session tracking.

Although this function is typically called within an <xsl:value-of> element, it does not
return a value. The purpose of using the <xsl:value-of> element is to force the XSLT
processor to execute the function instead of possibly optimizing out the call.

Retrieve Session Data Function

This function can be called within a stylesheet to retrieve a value from the session data,

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

14 of 66 3/15/2011 9:04 AM

like this:

<xsl:variable name="Variable" select="session:getData(Name)"/>

where

Variable specifies the name of an XSLT variable to create.

session:
is a namespace prefix to differentiate this function from any other. The
namespace URI for this prefix must be:
java:org.cdlib.xtf.xslt.Session.

Name specifies the name to look up in the session data.

This function searches the session data for a value with a matching name and returns the
value (in this case, assigning it to the given XSLT variable.) If not found, null is returned
(i.e. empty string/empty sequence.)

Note that if session tracking isn’t enabled, null is always returned. By default session
tracking is enabled; see the XTF Deployment Guide for more information on enabling or
disabling session tracking.

Get Session Identifier

This function can be called within a stylesheet to obtain the current session identifier
string, like this:

<xsl:variable name="sessionID" select="session:getID()"/>

where

session:
is a namespace prefix to differentiate this function from any other. The
namespace URI for this prefix must be:
java:org.cdlib.xtf.xslt.Session.

This function returns the unique identifier assigned by the servlet container (e.g. Resin or
Tomcat) to the current user session.

Check Enabled Status FunctionThis function can be called within a stylesheet to check
whether session tracking is enabled, like this:

<xsl:if test="session:isEnabled()"/>

where

session:
is a namespace prefix to differentiate this function from any other. The
namespace URI for this prefix must be:
java:org.cdlib.xtf.xslt.Session.

This function returns true if session tracking is enabled in the configuration file for the
current servlet. It returns false if session tracking is not enabled. By default session
tracking is enabled; see the XTF Deployment Guide for more information on enabling or
disabling session tracking.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

15 of 66 3/15/2011 9:04 AM

Encode URL Function

This function can be called within a stylesheet to add the session ID to any URL created by
the stylesheet, like this:

<xsl:variable name="Variable" select="session:encodeURL(RawURL)"/>

where

Variable specifies the name of an XSLT variable to create. This variable will contain the
new, encoded, URL.

session:
is a namespace prefix to differentiate this function from any other. The
namespace URI for this prefix must be:
java:org.cdlib.xtf.xslt.Session.

RawURL specifies an expression or other variable containing the URL to be encoded.

This function adds a session ID to the specified raw URL, if necessary. Generally session
IDs are stored in cookies, but if the user has disabled cookies, URLs will have session IDs
added to them. Note that if session tracking is disabled, the URL will be returned
unchanged.

session:noCookie()

This extension function is used to determine if cookies are enabled in the user’s browser.

<xsl:if test="session:noCookie()">

 Requires Cookie!

</xsl:if>

where

session:
is a namespace prefix to differentiate this function from any other. The
namespace URI for this prefix must be:
java:org.cdlib.xtf.xslt.Session.

Calling Command-line Tools

The built-in exec extension element can be used in stylesheets to call external command-line
tools. See the Programming Guide for a description and examples.

External Command Extension Element

This element can be used inside any XTF stylesheet to call a command-line program, like this:

<exec:run command = "CommandName"
 {timeout = "Milliseconds"}
 xsl:extension-element-prefixes="exec">

 {<exec:arg>Argument1</exec:arg>}
 {<exec:arg>Argument2</exec:arg>}
 …

 {<exec:input>
 XmlOrString

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

16 of 66 3/15/2011 9:04 AM

 </exec:input>}

</exec:run>

where

exec:
is a namespace prefix identifying this particular Saxon extension.
The namespace URI for this prefix must be:
java:/org.cdlib.xtf.saxonExt.Exec.

command=“CommandName”
specifies the command-line program to run. In general, this should
be an absolute path; if a relative path is given, it will be resolved
in an undefined manner.

timeout=“Milliseconds”

is an optional attribute setting an upper limit, in milliseconds, on
the amount of time the external process will be given to finish its
work. If this time is exceeded, the process will be forcibly
terminated, an a Java exception will be thrown (which terminates
stylesheet processing immediately.) If this attribute is not
specified, the process will be allowed to run to completion no
matter how long it takes.

<exec:arg>

is an optional sub-element that can be used repeatedly to specify
command-line arguments to be passed to the program. Each
argument should be specified in its own <exec:arg> element; in
particular, pairs should usually be broken up. For example, to
perform the command “ls -al *” one would specify two
arguments, the first being “-al” and the second being “*“.

<exec:input>

is an optional sub-element that specifies the input to be send to the
external program (input will be sent to the process stdio stream). If
the content of the exec:input element is XML data (for instance, a
variable holding one or more elements) then the servlet will
automatically serialize the data into standard XML format, with
UTF-8 character encoding. If the content is not XML, the string
will be sent to the tool verbatim.

This extension element calls an external command-line tool. Internally, this creates a new
operating system process, and the servlet thread waits for that process to complete.
If the exec:input element is specified, the entire string of input text (converted from XML to text
if necessary) will be fed to the process’ stdin stream.

Output from the process’ stdout stream will be collected, and the servlet checks if the data begins
with an XML header. If so, the value of the exec:run element will be actual XML elements from
the data. Otherwise, the value will be one long string, being an exact copy of the output from the
external tool.

If the process exits with a non-zero code (or the optional timeout is exceeded) then XTF will
throw a Java exception, which causes the stylesheet execution to terminate immediately.

File Utility Functions

XTF provides a number of functions that stylesheets can use to check attributes of a file in the
local filesystem. See the XTF Programming Guide for a description and examples.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

17 of 66 3/15/2011 9:04 AM

File Existence Extension Function

This extension function can be used within a stylesheet to determine whether a particular
file exists on the filesystem, like this:

<xsl:if test="FileUtils:exists(FilePath)">
 …
</xsl:if>

where

FileUtils:
is a namespace prefix identifying this set of Saxon extension functions. The
namespace URI for this prefix must be:
java:org.cdlib.xtf.xslt.FileUtils.

FilePath
specifies the relative or absolute path to the file in question. If a relative
path is specified, it will be resolved in relation to the stylesheet that calls the
function.

The extension function returns the boolean value true if the file is readable by the
stylesheet, or false if not.

File Length Function

This extension function can be used within a stylesheet to determine the length (in bytes)
of a particular file exists on the filesystem, like this:

<xsl:variable name="myFileLen" select="FileUtils:length(FilePath)">
 …
</xsl:variable>

where

FileUtils:
is a namespace prefix identifying this set of Saxon extension functions. The
namespace URI for this prefix must be:
java:org.cdlib.xtf.xslt.FileUtils.

FilePath
specifies the relative or absolute path to the file in question. If a relative
path is specified, it will be resolved in relation to the stylesheet that calls the
function.

The extension function returns the length, in bytes, of the specified file, or -1 if the file
cannot be read.

File Modification Time Function

This extension function can be used within a stylesheet to find out when a particular file
was last modified, like this:

<xsl:variable name="myModTime"
 select="FileUtils:lastModified(FilePath, DateFormat)">
 …
</xsl:variable>

where

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

18 of 66 3/15/2011 9:04 AM

FileUtils:
is a namespace prefix identifying this set of Saxon extension functions. The
namespace URI for this prefix must be:
java:org.cdlib.xtf.xslt.FileUtils.

FilePath
specifies the relative or absolute path to the file in question. If a relative
path is specified, it will be resolved in relation to the stylesheet that calls the
function.

DateFormat

is a string representing the format that the date and/or time should be
returned in. This uses codes from Java’s SimpleDateFormat class such as
yyyy-MM-dd:HH:mm:ss. Warning: “mm” and “MM” are different: the
former is minutes, the latter is months.

The extension function returns a formatted version of the date and/or time (depending on
format) that a given file was last modified. This can be useful for detecting which files are
newer than others, processing all files newer than a certain date, etc.

Current Date & Time Function

This extension function can be used within a stylesheet to find out the current date and
time known to the system, like this:

<xsl:variable name="myTime"
 select="FileUtils:curDateTime(DateFormat)">
 …
</xsl:variable>

where

FileUtils:
is a namespace prefix identifying this set of Saxon extension functions. The
namespace URI for this prefix must be:
java:org.cdlib.xtf.xslt.FileUtils.

DateFormat

is a string representing the format that the date and/or time should be
returned in. This uses codes from Java’s SimpleDateFormat class such as
yyyy-MM-dd:HH:mm:ss. Warning: “mm” and “MM” are different: the
former is minutes, the latter is months.

The extension function returns a formatted version of the current date and/or time
(depending on format). This can be useful for constructing time-based queries, displaying
the time or date on a result page, etc.

readXMLStub

This extension function provides an efficient way to determine the root element name,
public ID, DTD URI, and namespace of the source document.

<xsl:variable name="xmlStub"
 select="FileUtils:readXMLStub(FilePath)">
 …
</xsl:variable>

where

FileUtils: is a namespace prefix identifying this set of Saxon extension functions. The

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

19 of 66 3/15/2011 9:04 AM

namespace URI for this prefix must be:
java:org.cdlib.xtf.xslt.FileUtils.

FilePath
specifies the relative or absolute path to the file in question. If a relative
path is specified, it will be resolved in relation to the stylesheet that calls the
function.

This can be very useful when trying to determine the type of document you are dealing
with and which stylesheets to apply to it. xsl:for-each must be used to correctly set the
context node for the functions used in creating the variables.

<xsl:for-each select="FileUtils:readXMLStub($file)">
 <xsl:variable name="rn" select="name(*[1])"/>
 <xsl:variable name="pid" select="unparsed-entity-public-id($rn)"/>
 <xsl:variable name="uri" select="unparsed-entity-uri($rn)"/>
 <xsl:variable name="ns" select="namespace-uri(*[1])"/>
 <xsl:if test="matches($rn,'^TEI') or
 matches($pid,'TEI') or
 matches($uri,'tei2\.dtd') or
 matches($ns,'tei')">
 This must be a TEI document!...
 </xsl:if>
 …
<xsl:for-each>

In the example stylesheets you can see it in action in both the docSelector and
docReqParser.

Redirecting to Another URL

XTF provides an extension element that immediately redirects the user’s browser to a different
URL, suppressing further processing of the formatting stylesheet. See the XTF Programming
Guide for a description and example.

HTTP Redirection Extension

This element can be used inside any parsing or formatting stylesheet in XTF like this:

<redirect:send url="TargetURL"
 xmlns:redirect="java:/org.cdlib.xtf.saxonExt.Redirect"
 xsl:extension-element-prefixes="redirect"/>

where

url=“TargetURL”
is a required attribute specifying the URL that the user’s browser should be
redirected to. An absolute or relative URL may be specified. If relative, the
URL will be resolved by the servlet container to an absolute URL.

redirect:

is a namespace prefix identifying this Saxon extension instruction. The
namespace URI for this prefix must be:
java:/org.cdlib.xtf.saxonExt.Redirect . In addition, it must be
declared in the list of extension-element-prefixes for Saxon. The
declarations are most easily done in-line as shown above.

This extension element causes an immediate HTTP redirect (code 302) to be sent to the user’s
browser. Further processing of the stylesheet is aborted.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

20 of 66 3/15/2011 9:04 AM

No prior output is allowed before this extension instruction is executed. If any output was
generated, an exception will be thrown and the redirect will fail.

TBD: Dynamic E-mail
TBD: Tidying HTML Files

Query Router and Query Parser Tags

Common Input Tags and Parameters
Common Parser Input Tags

The following tags make up the XML input for the Query Router, Query Parser, and Document
Request Parser stylesheets. They constitute a simple XML representation of the query URL
supplied to the crossQuery or dynaXML servlet.

Container TagThis tag is the outermost tag for the XML input fragment sent to the router
or parser stylesheet for translation. It has the form:

<parameters>
 ParameterBlock
 ParameterBlock
 …
</parameters>

Parameter Block TagThis tag is the XML input to the parser for a single parameter in a
user query URL. It has the form:

<param name="ParamName" value="ParamValue">
 Token | Phrase
 Token | Phrase
 …
</param>

where

name=“ParamName” is the name of the parameter extracted from the original query
URL.

value=“ParamValue” is the original text in the query URL that is assigned to the
specified parameter.

Note that each of the parameters from the query URL is also available as a standard XSL
parameter with the form:

<xsl:param name="ParamName" select="DefaultValueIfNotInURL"/>

This allows query parameters to be accessed either through the standard template driven
XML or through stylesheet parameters.

Token Tag

This tag identifies a single word or token taken from the query URL. It has the form:

<token value="Word" isWord="YesOrNo"/>

where

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

21 of 66 3/15/2011 9:04 AM

value=“Word” is the actual word or symbol extracted from the URL.

isWord=“YesOrNo” identifies whether the token is a word (isWord="yes") or a
punctuation symbol (isWord="no".)

Phrase Tag

This tag identifies a literal phrase taken from the query URL. It has the form:

<phrase value="StringOfWords">
 Token
 Token
 …
</phrase>

where

value=“StringOfWords” is the entire phrase extracted from the URL as a single string.

Token, Token… is the original phrase broken down into one or more Token
Tags (see above), one for each word or symbol in the phrase.)

Common Stylesheet Parameters

This section summarizes the standard set of XSL parameters available to every stylesheet used by
the crossQuery and dynaXML servlets. These include the original URL of the current request (in
a few handy forms), the XTF base directory, and headers from the HTTP request.

Request URL

This field identifies the full URL passed to the XTF system for the current request. The
request URL is always available to servlets (unlike many of the following parameters
which are optional). It is accessed via the XSL parameter

<xsl:param name="http.URL"/>

This parameter contains a URL string of the form: http://yourserver/yourport/servlet
/queryparms

where

yourserver is the name of your XTF server
yourport is the port through which XTF requests are routed (typically 8080)

servlet is the name of the servlet to which the request is being sent. Normally, this is
either search (for crossQuery) or view (for dynaXML)

queryparms

is the list of parameters that defines the actual request being sent to the
servlet. All URL escape codes (such as %20 for space) will have been
translated to normal characters, and UTF-8 octet sequences will have been
decoded.

Servlet Directory

This field identifies the filesystem path (directory) of the XTF instance in which the
stylesheet is running. It is accessed via the XSL parameter

<xsl:param name="servlet.dir"/>

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

22 of 66 3/15/2011 9:04 AM

Typically this value comes from the servlet container (e.g. Resin or Tomcat), but may be
overridden by specifying a base-dir parameter in the servlet container configuration. As
this varies by container, check the documentation for your servlet container if you wish to
override this value.

Servlet URL

This field identifies the URL used to access the servlet. It is accessed via the XSL
parameter

<xsl:param name="servlet.URL"/>

This parameter contains a URL string of the form: http://yourserver{:yourport}
/xtf/servlet

where

yourserver is the name of your XTF server
yourport is the port through which XTF requests are routed (typically 8080)

servlet is the name of the servlet to which the request is being sent. Normally, this is
either search (for crossQuery) or view (for dynaXML)

Note that the query string is not included in this parameter; if you need to access the query
string, use the Request URL parameter above.

Root URL

This field identifies the URL of this particular instance in the servlet container. The value is
useful for accessing icons and other non-servlet resources from the container. It is accessed
via the XSL parameter

<xsl:param name="root.URL"/>

This parameter contains a URL string of the form: http://yourserver{:yourport}/xtf/
where

yourserver is the name of your XTF server
yourport is the port through which XTF requests are routed (typically 8080)

Note that the servlet name and query string are not included in this parameter; if you need
to access these, use the Request URL parameter or the Servlet URL parameter, above.

User-Agent Header FieldThis optional HTTP header field identifies the browser that issued
the current request. It is accessed via the XSL parameter

<xsl:param name="http.user-agent"/>

This parameter contains a string that identifies the browser that made the current request.
Most HTTP requests will provide this field. For example:

Mozilla/4.0 (compatible; MSIE 5.0; Windows 98; DigExt; empas)

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

23 of 66 3/15/2011 9:04 AM

Note that the contents of this field vary widely depending on which browser made the
request, and a detailed description is beyond the scope of this document.

Referer FieldThis optional HTTP header field identifies the web page from which the
request URL was issued. It is accessed via the XSL parameter

<xsl:param name="http.referer">

This parameter holds a URL string identifying the web page that issued the request. Often
the initial request to the servlet will supply this parameter; subsequent requests will not.

If-Modified-Since Header FieldThis optional HTTP header field identifies the last time a
particular request URL was issued by a browser. This field can be used by an XTF
stylesheet to determine if a request needs to be processed because the XTF database has
changed, or whether the requesting browser can use its previously cached results. This field
is accessed via the XSL parameter

<xsl:param name="http.if-modified-since"/>

Most HTTP responses will not include this parameter, but if they do, the contents of this
time string of the form:
weekday, dd-mmm-yy hh:mm:ss timezone
where

weekday is the day of the week the request was last issued

dd-mmm-yy is the day, three letter month abbreviation, and year the request was last
issued

hh:mm:ss is the time the request was last issued, represented as a 24 hour GMT based
time

timezone is the offset in hours of the timezone from which the request was last issued.
Other HTTP Headers

All HTTP header fields are made available to stylesheets in a similar fashion to the fields
detailed above. In general they are accessed via XSL parameters like this:

<xsl:param name="http.field-name">

where field-name is the name of the HTTP header field. Note that most HTTP header
fields will be absent most of the time.

Pass-Through Configuration ParametersAny unrecognized tag present in the configuration
file for a given tool (i.e. textIndexer.conf for the textIndexer, dynaXML.conf for the
dynaXML, etc.) will be made available to stylesheets run by that tool. These can be
accessed by declaring an XSLT parameter containing the element name and the attribute
name:

<xsl:param name="ElementName.AttributeName/>

For a concrete example, see the Programming Guide.

Query Router tags

The tags listed here are XML tags associated with the Query Router stylesheet. The tags are divided

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

24 of 66 3/15/2011 9:04 AM

into two categories: input tags (here) and then output tags. The input tags are used by the crossQuery
Servlet to translate the original query URL into a simple XML representation that can act as input to
the Query Router stylesheet. The output tags are then used by the Query Router stylesheet to form the
actual XML query passed to the crossQuery servlet’s Text Search Engine for processing.

The XML input to the Query Router stylesheet is a simple XML representation of the query URL
supplied to the crossQuery servlet from the user query web-page. The XML input and XSL parameters
are the same as those for the Query Parser and Document Request Parser.

Query Router Output Tags

These tags are used by the Query Router stylesheet to form the XML response telling the
crossQuery servlet the particular query parser stylesheet to use. The top-level tag is the Route
Tag below.

Route Tag

This tag is outermost tag in the query route sent to the crossQuery servlet’s query routing
logic. It has the form:

<route>

 QueryParserTag
 {ErrorGenTag}

</route>

The QueryParserTag (see below) specified within this tag identifies the Query Parser
stylesheet to use. If specified, the ErrorGenTag (see below) identifies an Error Generator
stylesheet to use instead of the default specified in the crossQuery.conf file.

QueryParser Tag

This tag appears directly within a Route Tag (see above). It has the form:

<queryParser path="QueryParserLocation"/>

This tag identifies which Query Parser stylesheet should be utilized by crossQuery to parse
the URL parameters and produce an XTF query. If this path is not specified as an absolute
path, it is assumed to be relative to the XTF base installation directory (i.e., XTF_HOME.)

ErrorGen Tag

This tag appears directly within a Route Tag (see above). It has the form:

<errorGen path="ErrorGeneratorLocation"/>

This tag identifies which stylesheet should be used in case unexpected errors occur during
query parsing or processing. This overrides the default error generator specified in the
crossQuery.conf configuration file. If this path is not specified as an absolute path, it is
assumed to be relative to the XTF base installation directory (i.e., XTF_HOME.)

Query Parser Output Tags

The tags listed here are XML tags associated with the Query Parser stylesheet. The tags are divided

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

25 of 66 3/15/2011 9:04 AM

into two categories: output tags (on this page) and input tags. The input tags are used by the crossQuery
Servlet to translate the original query URL into a simple XML representation that can act as input to
the Query Parser stylesheet.The following output tags are used by the Query Parser stylesheet to form
the XML query passed to the crossQuery search engine for processing. Since there are so many, each
tag has its own page. The top-level tag is the <query> tag below.

<query>
<error>
<term>
<phrase>
<exact>

<and>
<or>
<orNear>
<not>
<near>

<range>
<sectionType>
<facet>
<spellcheck>
<resultData>

<moreLike>
<allDocs>

Query Tag: <query>

This tag is outermost tag in an XML query sent to the crossQuery servlet’s search engine. It has
the form:

<query indexPath = "IndexDBLocation"
 style = "ResultFormatterLocation"
 {sortDocsBy = "ListOfMetaFields|score"}
 {startDoc = "FirstDocToReturn"}
 {maxDocs = "MaxDocsToReturn"}
 {termLimit = "MaxTermsToAllow"}
 {workLimit = "MaxWorkToAllow"}
 {maxContext = "MaxContextChars"}
 {maxSnippets = "SnippetsToOutput"}
 {termMode = "TermMarkMode"}
 {field = "FieldToSearch"}
 {normalizeScores = "TrueOrFalse"}
 {explainScores = "TrueOrFalse"}>

 QueryElement

</query>

where

indexPath="IndexDBLocation"
is the path to the Index Database to use when
performing the search. If this path is not specified as
an absolute path, it is assumed to be relative to the

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

26 of 66 3/15/2011 9:04 AM

XTF base installation directory (i.e., XTF_HOME.)

style="ResultFormatterLocation"

is the path to the Result Formatter stylesheet to use
to display the results generated by the current query. If
this path is not specified as an absolute path, it is
assumed to be relative to the XTF base installation
directory (i.e., XTF_HOME.)

sortDocsBy="ListOfMetaFields|score"

is an optional attribute specifying a list of meta fields
by which to sort the results. The list should consist of a
quoted string containing one or more meta-field
names, separated by commas. If multiple meta-fields
are specified, the results are sorted first by the
left-most meta-field, then sub-sorted by subsequent
fields to produce the final output. Optionally, each
meta-field name can be preceded by a plus sign (+) or
a minus sign (-) to indicate whether the results for that
field should be sorted in ascending or descending
order. If no plus or minus sign is specified for a
meta-field, then the results are sorted in ascending
order by default. If this attribute not specified,
documents are by default sorted in order of decreasing
score (so the most “relevant” documents are first.)
With XTF 3.0, this default behavior can now also be
explicitly set by providing a value of “score” (or
synonym “relevance”). (Note: Meta tags to be used
for sorting queries should also have an
xtf:tokenize=”no” attribute set, or sorting will produce
unpredictable results.) (Compatibility note: This
attribute was previously called “sortMetaFields”, and
this old name is still accepted to retain backward
compatibility.)

startDoc="FirstDocToReturn"

is an optional attribute specifying the ordinal number
of the first matching document to pass on to the
Result Formatter. If not specified, this attribute
defaults to 1, meaning the first document that contains
matches for the specified query.

maxDocs="MaxDocsToReturn"

is an optional attribute specifying the number of
matching documents to pass on to the Result
Formatter. If not specified, this attribute defaults to
10, meaning that up to 10 documents with matches
will be returned for the specified query. The special
value “all” may be used to indicate that all matching
documents should be returned.

termLimit="MaxTermsToAllow"

is an optional attribute that limits the number of terms
permitted in a query. If not specified, this attribute
defaults to 50. This attribute is used primarily to
prevent wildcard expansions like <term>a*</term>
from overloading the crossQuery servlet. If the query
does in fact exceed the limit specified by this attribute,
a TermLimit error is sent to the Error Generator

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

27 of 66 3/15/2011 9:04 AM

stylesheet for the offending query.

workLimit="MaxWorkToAllow"

is an optional attribute that limits the amount of
“work” that may be performed in a query. If not
specified, this attribute defaults to -1, meaning no limit
is enforced. This attribute is used primarily to prevent
queries from overloading the crossQuery servlet,
which would adversely impact the responsiveness of
the XTF system. If a query exceeds the work limit set
by this attribute, a ExcessiveWork error is sent to the
Error Generator stylesheet for the offending query.
For the crossQuery servlet, one unit of “work” is
equivalent to finding a single matching term in a single
document. Experimentally, a value of 500,000 for this
attribute seems to work well.

maxContext="MaxContextChars"

identifies the size of a snippet to pass in the Result
Formatter snippet tag. If not specified, this attribute
defaults to 80 characters. Note that the context length
is the total number of characters for the snippet, which
includes both the matched text and the context text
surrounding it.

maxSnippets="SnippetsToOutput"

identifies the number of snippets to pass on to the
Result Formatter stylesheet for display. A snippet is
defined as the matching text found in a document for a
particular query, along with some additional text
around it for context. The amount of context displayed
for each match is defined by the maxContext attribute.
If not specified this attribute defaults to 3, meaning
snippets for the top three matches for a document are
returned. Note that -1 is a special value. If
maxSnippets is set to -1, it requests that all snippets
for a document be returned. If the maxSnippets
attribute is set by the <query> tag, any occurrences of
the maxSnippets attribute set by the inner tags must
match the value set by the <query> tag. Otherwise, an
error will be generated. (Note: Allowing nested copies
of the maxSnippets attribute doesn’t serve a purpose
other than to make it easier to write
docReqParser.xsl stylesheets in a uniform way.
Effectively, the outermost maxSnippets value is
always used.)

termMode="TermMarkMode"

is an optional parameter that specifies how terms
should be marked in the search results. Valid values
for this option are: "none": Do not mark matching
terms anywhere in the search results. "hits": Mark
matching terms in the search results only if they
appear inside <hit> tags. "context": Mark matching
terms in the search results only if they appear inside
<snippet> or <hit> tags. "all": Mark matching
terms in search results anywhere they occur. If not

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

28 of 66 3/15/2011 9:04 AM

specified, the default value used is “hits”. Note that
when term marking is enabled, matching terms in the
search results are placed inside <term> … </term>
tag sets.

field="FieldToSearch"

is an optional parameter that identifies which field in
the index to search. This can be set to text to indicate
that the main text of the document should be searched,
or it can name a meta-data field such as creator or
subject. If child elements specify their own field
attributes, their field name must agree with the parent
element. (Note: Allowing nested copies of the field
attribute doesn’t serve a purpose other than to make it
easier to write docReqParser.xsl stylesheets in a
uniform way. Effectively, the outermost field name is
always used.)

normalizeScores="TrueOrFalse"

is an optional parameter that can disable score
normalization, the process that converts all document
scores to be relative to the highest ranking document
(which receives a score of 100). If set to no or false,
the scores will be raw floating point numbers. The
default, true or yes, will normalize scores to the range
of 0..100, and round them to whole numbers. In the
default XTF stylesheets, one can simply add
“;normalizeScores=1” to the query URL, and the
default Query Parser will set this attribute for you.

explainScores="TrueOrFalse"

is an optional parameter that causes XTF to output a
structured, detailed explanation of how the score for
each document was calculated. This means that each
Document Hit Tag in the query result will contain an
Score Explanation Tag, which in turn contains other
Score Explanation Tags describing how the
components of that score. In the default XTF
stylesheets, one can simply add “;explainScores=1”
to the query URL, and the default Query Parser will
set this attribute for you. This is an advanced feature,
as XTF’s scoring is fairly complex and can be
confusing to those just starting out. For an overview of
how XTF scores document hits, see the Scoring
section of the document XTF Under the Hood. Note
that if you enable this attribute, you should generally
disable normalizeScores above, as the score
explanations describe the non-normalized score for
each document.

The primary purpose of the startDoc and maxDocs attributes is to allow search results to be split
up into multiple pages by the Result Formatter. For example, to display the second page of 50
matching documents, the following query tag could be generated by a link on the current result
page:

 <query … startDoc="51" maxDocs="50">

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

29 of 66 3/15/2011 9:04 AM

 …
</query>

The QueryElement specified within this tag identifies the query to be performed. This can be a
term query tag, or a phrase, exact, and, or, orNear, near, range, resultData, spellcheck, or not tag.

Note that the Query Parser stylesheet can issue a single top-level error tag instead of a query
tag if it encounters any errors.

Error Tag: <error>

This tag can be issued by the Query Parser when it encounters an error. It has the form:

<error message="Error Message"/>

where Error Message is an error string describing the error.

This tag is a top level tag, and should be issued by itself in place of the normal query tag when an
error occurs. Once issued, the error will be routed to the Error Generator stylesheet for
processing.

Term Tag: <term>

This tag specifies a single word to search for. This tag has the form:

<term {field = "FieldName"}
 {maxSnippets = "SnippetsToOutput"}
 {boost = "BoostValue"}>

 WordToFind

 {OptionalSectionTypeQuery}

</term>

where

field=“FieldName”

is an optional attribute that identifies which field in the
index to search. Often this attribute is set to text to indicate
that the main text of the document should be searched. It
can also be set to the name of a meta field such as author or
subject. It should be mentioned that the field name
specified by a <term> tag must match the field name set by
any tags that contain it. Otherwise, an error will be
generated.

maxSnippets=“SnippetsToOutput”

is an optional attribute that identifies the number of
snippets to pass on to the Result Formatter stylesheet for
display. A snippet is defined as the matching text found in a
document for a particular query, along with some additional
text around it for context. The amount of context displayed
for each match is defined by the maxContext attribute. If
not specified this attribute defaults to 3, meaning snippets
for the top three matches for a document are returned.
Also, this attribute can be set to -1, meaning all the snippets

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

30 of 66 3/15/2011 9:04 AM

for a document are returned. As with the field attribute, the
maxSnippets specified by a <term> tag must match the
value set by any tags that contain it. Otherwise, an error
will be generated.

boost=“BoostValue”

is an optional attribute that specifies a relevance boost
multiplier for this term in the query. Boost values higher
than 1.0 increase the relevance of a term, while boost
values between 0.0 and 1.0 decrease the relevance of a
term. Boost values less than zero will generate an error.

Note that aside from letters and numbers, only a few select symbols may appear in WordToFind
(e.g., apostrophes, periods as part of decimal numbers, etc.) If any other symbols appear in the
word to find, no matches will be found in the index. This is because the indexer removes all other
types symbols from a term before indexing it. For a complete list of symbols that may appear in a
term, see the XTF Under the Hood guide.

Also, the term tag is case-insensitive, so matches with capitalization different from that given in
WordToFind may appear in the resulting list of matches.

(Note: Any non-leading or trailing whitespace characters in WordToFind (i.e, space, tab,
carriage-return, linefeed, etc.) will produce unpredictable search results.)

If the field is "text", a Section Type sub-query may optionally appear, restricting this term query
to particular sections of a document based on section types added by the Pre-Filter stylesheet at
index time.

Phrase Search Tag: <phrase>

This tag specifies a phrase for which to search. This tag has the form:

<phrase {field = "FieldName"}
 {maxSnippets = "SnippetsToOutput"}
 {boost = "BoostValue"}>

 Term | Clause
 Term | Clause
 …

 {OptionalSectionTypeQuery}

</phrase>

where

field=“FieldName”

is an optional attribute that identifies which field in the
index to search. Often this attribute is set to text to indicate
that the main text of the document should be searched. It
can also be set to the name of a meta field such as author or
subject. It should be mentioned that the field name
specified by a <phrase> tag must match the field name set
by any tags that contain it. Otherwise, an error will be
generated. If no parent tags specify a field name, any field
name can be used by the <phrase> tag. Similarly, any tags

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

31 of 66 3/15/2011 9:04 AM

within a <phrase> tag must either specify the same field
name as the phrase, or specify no field name at all.
Otherwise, an error will be generated. (Note: Allowing
nested copies of the field attribute doesn’t serve a purpose
other than to make it easier to write docReqParser.xsl
stylesheets in a uniform way. Effectively, the outermost
field value is always used.)

maxSnippets=“SnippetsToOutput”

identifies the number of snippets to pass on to the Result
Formatter stylesheet for display. A snippet is defined as
the matching text found in a document for a particular
query, along with some additional text around it for
context. The amount of context displayed for each match is
defined by the maxContext attribute. If not specified this
attribute defaults to 3, meaning snippets for the top three
matches for a document are returned. Also, this attribute
can be set to -1, meaning all the snippets for a document
are returned. As with the field attribute, any maxSnippets
value set by the <phrase> tag must match the value set by
any tags that contain it. Otherwise, an error will be
generated. If no parent tags set a maxSnippets value, then
any value may be specified by the <phrase> tag. Similarly,
any tags within a <phrase> tag must either specify the
same field name as the phrase, or specify no field name at
all. Otherwise, an error will be generated. (Note: Allowing
nested copies of the maxSnippets attribute doesn’t serve a
purpose other than to make it easier to write
docReqParser.xsl stylesheets in a uniform way.
Effectively, the outermost maxSnippets value is always
used.)

boost=“BoostValue”

is an optional attribute that specifies a relevance boost
multiplier for this phrase in the query. Boost values higher
than 1.0 increase the relevance of a phrase, while boost
values between 0.0 and 1.0 decrease the relevance of a
phrase. Boost values less than zero will generate an error.
Note that boost values multiply. That is, if tags within a
<phrase> tag have boost attributes, their individual boost
values will be multiplied by the boost set for the containing
<phrase> tag.

Within the phrase tag, Term is a term tag, and Clause is a phrase, and, or, orNear, near, range,
resultData, or not tag.

Note that text will only match a phrase query if all the terms in the phrase tag appear in the
document in same order, with no other intervening words. Note that it does not matter whether
the phrase appears at the beginning, middle, or end of a field; it will match in any position. To
match the exact contents of an entire field, use the exact tag.

If the field is “text”, a Section Type sub-query may optionally appear, restricting this phrase
query to particular sections of a document based on section types added by the Pre-Filter
stylesheet at index time.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

32 of 66 3/15/2011 9:04 AM

Exact Tag: <exact>

This tag specifies an exact phrase to search for. This tag has the form:

<exact {field = "FieldName"}
 {maxSnippets = "SnippetsToOutput"}
 {boost = "BoostValue"}>

 Term | Clause
 Term | Clause
 …

 {OptionalSectionTypeQuery}

</exact>

where

field=“FieldName”

is an optional attribute that identifies which field in the
index to search. Normally, this attribute is set to the name
of a meta field such as author or subject. It may not be set
to text. It should be mentioned that the field name specified
by a <exact> tag must match the field name set by any tags
that contain it. Otherwise, an error will be generated. If no
parent tags specify a field name, any field name can be
used by the <exact> tag. Similarly, any tags within an
<exact> tag must either specify the same field name as the
phrase, or specify no field name at all. Otherwise, an error
will be generated. (Note: Allowing nested copies of the
field attribute doesn’t serve a purpose other than to make it
easier to write docReqParser.xsl stylesheets in a uniform
way. Effectively, the outermost field value is always used.)

maxSnippets=“SnippetsToOutput”

is an optional attribute that identifies the number of
snippets to pass on to the Result Formatter stylesheet for
display. A snippet is defined as the matching text found in a
document for a particular query, along with some additional
text around it for context. The amount of context displayed
for each match is defined by the maxContext attribute. If
not specified this attribute defaults to 3, meaning snippets
for the top three matches for a document are returned.
Also, this attribute can be set to -1, meaning all the snippets
for a document are returned. As with the field attribute, any
maxSnippets value set by the <exact> tag must match the
value set by any tags that contain it. Otherwise, an error
will be generated. If no parent tags set a maxSnippets
value, then any value may be specified by the <exact> tag.
Similarly, any tags within a <exact> tag must either specify
the same field name as the phrase, or specify no field name
at all. Otherwise, an error will be generated. (Note:
Allowing nested copies of the maxSnippets attribute
doesn’t serve a purpose other than to make it easier to
write docReqParser.xsl stylesheets in a uniform way.
Effectively, the outermost maxSnippets value is always

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

33 of 66 3/15/2011 9:04 AM

used.)

boost=“BoostValue”

is an optional attribute that specifies a relevance boost
multiplier for this phrase in the query. Boost values higher
than 1.0 increase the relevance of a phrase, while boost
values between 0.0 and 1.0 decrease the relevance of a
phrase. Boost values less than zero will generate an error.
Note that boost values multiply. That is, if tags within an
<exact> tag have boost attributes, their individual boost
values will be multiplied by the boost set for the containing
<exact> tag.

Within the exact tag, Term is a term tag, and Clause is a phrase, and, or, orNear, near, range,
resultData, or not tag.

Note that text will only match a exact query if all the terms in the exact tag appear in the
document in same order, with no other intervening words. In addition, the match must begin at
the start of the field and end at the end of the field (in other words, it must match the entire
field.)

For example, an exact search for “man on the moon” would not match field contents”put a man
on the moon”, nor would it match “man on the moon base”. Only a field whose contents are
exactly the string “man on the moon” (and nothing else) will match.

Note that “exact”-ness refers only to the lack of other terms before and after the match; the
normal rules for upper/lower case insensitivity, and accent/plural mapping still apply. So “man on
the moon” will still match “Men on the MOON”.

If the field is “text”, a < a
href=”#tagRef_crossQuery_QueryParser_Output_SectionType”>Section Type sub-query may
optionally appear, restricting this query to particular sections of a document based on section
types added by the Pre-Filter stylesheet at index time.

And Tag: <and>

This tag defines a search where all of the sub-terms or clauses must exist in a document for a
match to be made.

If a single field is specified (using the field attribute), documents will match if all of the
sub-terms or clauses occur in that field. If useProximity is “yes” (the default), then documents
with terms closer together and in the right order will score higher than those in which the terms
are farther apart.

If multiple fields are specified (using the fields attribute), documents will match if all of the
search terms occurs in any of the listed fields. That is, that is, it doesn’t matter which field(s) they
appear in, as long as all of them appear somewhere. If in one document multiple terms appear in
the same field, the score will be higher, and if the terms are close together, the score will be
higher still.

This tag has the form:

<and {field = "FieldName" |
 fields = "Field1,Field2,..."}

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

34 of 66 3/15/2011 9:04 AM

 {maxSnippets = "SnippetsToOutput"}
 {boost = "BoostValue"}
 {useProximity = "YesOrNo"}>

 Term | Clause
 Term | Clause
 …

 {OptionalSectionTypeQuery}

</and>

where

field="FieldName"

is an optional attribute that identifies which field in the
index to search. Often this attribute is set to text to indicate
that the main text of the document should be searched. It
can also be set to the name of a meta field such as author
or subject. It should be mentioned that if the field attribute
appears in any tags outside it, the field name in the <and>
tag must match the value set in the outer tags. Otherwise,
an error will be generated. However, if the <and> tag does
not specify a field name, and no tags outside it specify a
field name, then the tags directly below the <and> tag may
have any combination of field names desired. This is how
mixed queries of document text and meta data are formed.

fields="Field1,Field2,…"

is a multi-field alternative to the field attribute. It
identifies a list of fields in the index to search, instead of a
single field. Using a list of fields is an ideal way to perform
a “keyword” search, for example searching the title,
subject, author, and full text of documents. It should be
mentioned that the fields attribute is only applicable to
<and> and <or> queries. As with the field attribute, any
elements nested within the tag are not allowed to specify a
field or fields.

maxSnippets="SnippetsToOutput"

is an optional attribute that identifies the number of
snippets to pass on to the Result Formatter stylesheet for
display. A snippet is defined as the matching text found in a
document for a particular query, along with some
additional text around it for context. The amount of context
displayed for each match is defined by the maxContext
attribute. If not specified this attribute defaults to 3,
meaning snippets for the top three matches for a document
are returned. Also, this attribute can be set to -1, meaning
all the snippets for a document are returned. As with the
field attribute, if the maxSnippets attribute appears in any
containing tags, the value set for it in the <and> tag must
match the value set in the containing tags. Otherwise, an
error will be generated. Similarly, any occurrences of the
maxSnippets attribute in tags within the <and> tag must
have the same value as their containing tags. (Note:
Allowing nested copies of the maxSnippets attribute

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

35 of 66 3/15/2011 9:04 AM

doesn’t serve a purpose other than to make it easier to
write docReqParser.xsl stylesheets in a uniform way.
Effectively, the outermost maxSnippets value is always
used.)

boost="BoostValue"

is an optional attribute that specifies a relevance boost
multiplier for this clause in the query. Boost values higher
than 1.0 increase the relevance of a clause, while boost
values between 0.0 and 1.0 decrease the relevance of a
clause. Boost values less than zero will generate an error.
Note that boost values multiply. That is, if tags within an
<and> tag have boost attributes, their individual boost
values will be multiplied by the boost set for the containing
<and> tag.

useProxmity="YesOrNo"

is an optional attribute that specifies whether the AND
query should take the proximity of terms into account.
Generally it’s best to leave this on (the default) as it results
in higher quality results for the user. However, turning it off
can increase query processing speed, as the Text Engine
will have less work to do to calculate which documents
match the query. If not specified, this attribute defaults to
Yes, that is, proximity will be taken into account. Note that
if proximity processing is turned off, individual text hits
within document text and meta-data fields will not be
highlighted, and scores for matching documents will be
somewhat different.

Within the <and> tag, Term is a term tag, and Clause is a phrase, exact, and, or, orNear, near,
range, resultData, or not tag. If the field is "text", a Section Type sub-query may optionally
appear, restricting this query to particular sections of a document based on section types added
by the Pre-Filter stylesheet at index time.

Or Tag: <or>

This tag defines a search where any one of the sub-terms or clauses must exist in a document for
a match to be made. This tag has the form:

<or {field = "FieldName" |
 fields = "Field1,Field2,..."}
 {slop = "MaxMatchDistance"}
 {maxSnippets = "SnippetsToOutput"}
 {boost = "BoostValue"}>

 Term | Clause
 Term | Clause
 …

 {OptionalSectionTypeQuery}

</or>

where

field="FieldName" is an optional attribute that identifies which field in the

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

36 of 66 3/15/2011 9:04 AM

index to search. Normally, this attribute is set to text to
indicate that the main text of the document should be
searched. It can also be set to the name of a meta field such
as author or subject. It should be mentioned that if the field
attribute appears in any tags outside it, the field name in the
<or> tag must match the value set in the outer tags.
Otherwise, an error will be generated. However, if the <or>
tag does not specify a field name, and no tags outside it
specify a field name, then the tags directly below the <or>
tag may have any combination of field names desired. This
is how mixed queries of document text and meta data are
formed.

fields="Field1,Field2,…"

is a multi-field alternative to the field attribute. It
identifies a list of fields in the index to search, instead of a
single field. Using a list of fields is an ideal way to perform
a “keyword” search, for example searching the title,
subject, author, and full text of documents. It should be
mentioned that the fields attribute is only applicable to
<and> and <or> queries. As with the field attribute, any
elements nested within the tag are not allowed to specify a
field or fields.

slop=“MaxMatchDistance“

is a measure of the “nearness” of the terms or clauses
within a given field of a multi-field query. Note that this
attribute is required for multi-field <or> queries, and not
allowed for single-field <or> queries. To get an idea of
what slop does, see the discussion of this attribute for the
related <orNear> query, following this query.

maxSnippets="SnippetsToOutput"

is an optional attribute that identifies the number of
snippets to pass on to the Result Formatter stylesheet for
display. A snippet is defined as the matching text found in a
document for a particular query, along with some
additional text around it for context. The amount of context
displayed for each match is defined by the maxContext
attribute. If not specified this attribute defaults to 3,
meaning snippets for the top three matches for a document
are returned. Also, this attribute can be set to -1, meaning
all the snippets for a document are returned. As with the
field attribute, if the maxSnippets attribute appears in any
containing tags, the value set for it in the <or> tag must
match the value set in the containing tags. Otherwise, an
error will be generated. Similarly, any occurrences of the
maxSnippets attribute in tags within the <or> tag must have
the same value as their containing tags. (Note: Allowing
nested copies of the maxSnippets attribute doesn’t serve a
purpose other than to make it easier to write
docReqParser.xsl stylesheets in a uniform way.
Effectively, the outermost maxSnippets value is always
used.)

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

37 of 66 3/15/2011 9:04 AM

boost="BoostValue"

is an optional attribute that specifies a relevance boost
multiplier for this clause in the query. Boost values higher
than 1.0 increase the relevance of a clause, while boost
values between 0.0 and 1.0 decrease the relevance of a
clause. Boost values less than zero will generate an error.
Note that boost values multiply. That is, if tags within an
<or> tag have boost attributes, their individual boost values
will be multiplied by the boost set for the containing <or>
tag.

If a single field is specified (using the field attribute), documents will match if any search term
occurs in that field. Documents with more matching terms will score and rank higher than those
with fewer matching terms.

If multiple fields are specified (using the fields attribute), documents will match if any search
term occurs in any of the listed fields. Documents with more matching terms (in any field) will
score and rank higher than those with fewer matching terms. This will internally decompose to a
conjoined set of <orNear> queries; hence the requirement for the slop attribute in this case.

Within the or tag, Term is a term tag, and Clause is a phrase, exact, and, or, orNear, near, range,
resultData, or not tag. If the field is “text”, a Section Type sub-query may optionally appear,
restricting this phrase query to particular sections of a document based on section types added by
the Pre-Filter stylesheet at index time.

OrNear Tag: <orNear>

This tag defines a search where at least one of the sub-terms or clauses must be in a document. If
multiple terms do appear, hits where the terms are close together will score higher than those
where the terms are far from each other. Essentially, this provides the functionality of an <or>
search, with improved scoring. This tag has the form:

<orNear slop = "MaxMatchDistance"
 {field = "FieldName"}
 {maxSnippets = "SnippetsToOutput"}
 {boost = "BoostValue"}>

 Term | Clause
 Term | Clause
 …

 {OptionalSectionTypeQuery}

</orNear>

where

slop=“MaxMatchDistance” is a measure of the “nearness” of the terms or clauses
specified. See the discussion of slop calculation below.

field=“FieldName”

is an optional attribute that identifies which field in the
index to search. Often this attribute is set to text to indicate
that the main text of the document should be searched. It
can also be set to the name of a meta field such as author or
subject. It should be mentioned that the field name

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

38 of 66 3/15/2011 9:04 AM

specified by a <orNear> tag must match the field name set
by any tags that contain it. Otherwise, an error will be
generated. If no parent tags specify a field name, any field
name can be used by the <orNear> tag. Similarly, any tags
within a <orNear> tag must either specify the same field
name as the orNear clause, or specify no field name at all.
Otherwise, an error will be generated. (Note: Allowing
nested copies of the field attribute doesn’t serve a purpose
other than to make it easier to write docReqParser.xsl
stylesheets in a uniform way. Effectively, the outermost
field value is always used.)

maxSnippets=“SnippetsToOutput”

is an optional attribute that identifies the number of
snippets to pass on to the Result Formatter stylesheet for
display. A snippet is defined as the matching text found in a
document for a particular query, along with some additional
text around it for context. The amount of context displayed
for each match is defined by the maxContext attribute. If
not specified this attribute defaults to 3, meaning snippets
for the top three matches for a document are returned.
Also, this attribute can be set to -1, meaning all the snippets
for a document are returned. As with the field attribute, if
the maxSnippets attribute appears in any containing tags,
the value set for it in the <orNear> tag must match the
value set in the containing tags. Otherwise, an error will be
generated. Similarly, any occurrences of the maxSnippets
attribute in tags within the <orNear> tag must have the
same value as their containing tags. (Note: Allowing nested
copies of the maxSnippets attribute doesn’t serve a purpose
other than to make it easier to write docReqParser.xsl
stylesheets in a uniform way. Effectively, the outermost
maxSnippets value is always used.)

boost=“BoostValue”

is an optional attribute that specifies a relevance boost
multiplier for this clause in the query. Boost values higher
than 1.0 increase the relevance of a clause, while boost
values between 0.0 and 1.0 decrease the relevance of a
clause. Boost values less than zero will generate an error.
Note that boost values multiply. That is, if tags within an
<orNear> tag have boost attributes, their individual boost
values will be multiplied by the boost set for the containing
<orNear> tag.

Within the OrNear tag, Term is a term tag, and Clause is a phrase, exact, and, or, orNear, near,
range, resultData, or not tag.

A slop value for a potential match is accumulated as follows:

A potential match is found when all the items specified in the orNear tag are found in a
document. Initially, the accumulated slop for this potential match is set to zero.

1.

Next the accumulated slop is incremented by one for each word in the potential match that
doesn’t appear in orNear tag.

2.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

39 of 66 3/15/2011 9:04 AM

Finally, the accumulated slop is incremented by one each time a word specified in the
orNear tag appears out of order in the document. If the final accumulated slop exceeds the
value set by the slop attribute of the orNear tag, the terms are considered to be separate
(and thus lower scoring).

3.

It should also be noted that, when applied to the “text” field, if the value specified for the slop
attribute exceeds the maximum proximity for the index being used, the maximum proximity
value will be used instead. There is no limit on the slop attribute when applied to meta-data
fields.
If the field is “text”, a Section Type sub-query may optionally appear, restricting this query to
particular sections of a document based on section types added by the Pre-Filter stylesheet at
index time.

Not Tag: <not>

This tag defines a search where none of the sub-terms or clauses must exist in a document for a
match to be made. This tag has the form:

<not {field = "FieldName"}
 {maxSnippets = "SnippetsToOutput"}
 {boost = "BoostValue"}>

 Term | Clause
 Term | Clause
 …
</not>

where

field=“FieldName”

is an optional attribute that identifies which field in the
index to search. Normally, this attribute is set to text to
indicate that the main text of the document should be
searched. It can also be set to the name of a meta field such
as author or subject. It should be mentioned that if the field
attribute appears in any tags outside it, the field name in the
<not> tag must match the value set in the outer tags.
Otherwise, an error will be generated. However, if the
<not> tag does not specify a field name, and no tags
outside it specify a field name, then the tags directly below
the <not> tag may have any combination of field names
desired. This is how mixed queries of document text and
meta data are formed.

maxSnippets=“SnippetsToOutput”

is an optional attribute that identifies the number of
snippets to pass on to the Result Formatter stylesheet for
display. A snippet is defined as the matching text found in a
document for a particular query, along with some additional
text around it for context. The amount of context displayed
for each match is defined by the maxContext attribute. If
not specified this attribute defaults to 3, meaning snippets
for the top three matches for a document are returned.
Also, this attribute can be set to -1, meaning all the snippets
for a document are returned. As with the field attribute, if
the maxSnippets attribute appears in any containing tags,

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

40 of 66 3/15/2011 9:04 AM

the value set for it in the <not> tag must match the value
set in the containing tags. Otherwise, an error will be
generated. Similarly, any occurrences of the maxSnippets
attribute in tags within the <not> tag must have the same
value as their containing tags. (Note: Allowing nested
copies of the maxSnippets attribute doesn’t serve a purpose
other than to make it easier to write docReqParser.xsl
stylesheets in a uniform way. Effectively, the outermost
maxSnippets value is always used.)

boost=“BoostValue”

is an optional attribute that specifies a relevance boost
multiplier for this clause in the query. Boost values higher
than 1.0 increase the relevance of a clause, while boost
values between 0.0 and 1.0 decrease the relevance of a
clause. Boost values less than zero will generate an error.
Note that boost values multiply. That is, if tags within an
<not> tag have boost attributes, their individual boost
values will be multiplied by the boost set for the containing
<not> tag.

Within the not tag, Term is a term tag, and Clause is a phrase, exact, and, or, orNear, near,
resultData, or range tag.

The not tag is usually used to restrict the results of a larger query (such as an and, or, or near
query.) To use it this way, embed the not tag within another query tag. However, not can also be
used alone at the top level (just inside the <query> element), and the effect is to gather all
documents that don’t match the <not> specification.

It is important to note that when applied to the “text” field, the not tag in reality operates as a
“not near.” That is, the items to not be found are localized to other terms in the search query.
Why? Consider a query for “bat” not “cave”. Imagine a document where “bat man” appears in
Chapter 1. Would you really want to ignore that match if the word “cave” appears in a wholly
unrelated passage somewhere in Chapter 12? Probably not. Consequently, search elements
specified within a <not> clause are considered relevant if they are within the same chunk as
other elements in the query. For more about document chunks sizing, see textIndexer
Configuration File section in the XTF Deployment Guide. By contrast, when applied to
meta-data fields, the <not> clause operates as a “not anywhere“, and ignores chunk sizing.

Near Tag: <near>

This tag defines a search where all of the sub-terms or clauses must be in a document, and within
a specified distance of each other for a match to be made. This tag has the form:

<near slop = "MaxMatchDistance"
 {field = "FieldName"}
 {maxSnippets = "SnippetsToOutput"}
 {boost = "BoostValue"}>

 Term | Clause
 Term | Clause
 …

 {OptionalSectionTypeQuery}

</near>

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

41 of 66 3/15/2011 9:04 AM

where

slop=“MaxMatchDistance” is a measure of the “nearness” of the terms or clauses
specified. See the discussion of slop values below.

field=“FieldName”

is an optional attribute that identifies which field in the
index to search. Often this attribute is set to text to indicate
that the main text of the document should be searched. It
can also be set to the name of a meta field such as author or
subject. It should be mentioned that the field name
specified by a <near> tag must match the field name set by
any tags that contain it. Otherwise, an error will be
generated. If no parent tags specify a field name, any field
name can be used by the <near> tag. Similarly, any tags
within a <near> tag must either specify the same field
name as the near clause, or specify no field name at all.
Otherwise, an error will be generated. (Note: Allowing
nested copies of the field attribute doesn’t serve a purpose
other than to make it easier to write docReqParser.xsl
stylesheets in a uniform way. Effectively, the outermost
field value is always used.)

maxSnippets=“SnippetsToOutput”

is an optional attribute that identifies the number of
snippets to pass on to the Result Formatter stylesheet for
display. A snippet is defined as the matching text found in a
document for a particular query, along with some additional
text around it for context. The amount of context displayed
for each match is defined by the maxContext attribute. If
not specified this attribute defaults to 3, meaning snippets
for the top three matches for a document are returned.
Also, this attribute can be set to -1, meaning all the snippets
for a document are returned. As with the field attribute, if
the maxSnippets attribute appears in any containing tags,
the value set for it in the <near> tag must match the value
set in the containing tags. Otherwise, an error will be
generated. Similarly, any occurrences of the maxSnippets
attribute in tags within the <near> tag must have the same
value as their containing tags. (Note: Allowing nested
copies of the maxSnippets attribute doesn’t serve a purpose
other than to make it easier to write docReqParser.xsl
stylesheets in a uniform way. Effectively, the outermost
maxSnippets value is always used.)

boost=“BoostValue”

is an optional attribute that specifies a relevance boost
multiplier for this clause in the query. Boost values higher
than 1.0 increase the relevance of a clause, while boost
values between 0.0 and 1.0 decrease the relevance of a
clause. Boost values less than zero will generate an error.
Note that boost values multiply. That is, if tags within an
<near> tag have boost attributes, their individual boost
values will be multiplied by the boost set for the containing
<near> tag.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

42 of 66 3/15/2011 9:04 AM

A slop value for a potential match is accumulated as follows:

A potential match is found when all the items specified in the near tag are found in a
document. Initially, the accumulated slop for this potential match is set to zero.

1.

Next the accumulated slop is incremented by one for each word in the potential match that
doesn’t appear in near tag.

2.

Finally, the accumulated slop is incremented by one each time a word specified in the near
tag appears out of order in the document. If the final accumulated slop exceeds the value
set by the slop attribute of the near tag, the potential match is ignored. Note that setting the
slop value for the near tag to zero effectively produces an exact phrase search, and is in
fact how the phrase tag is implemented internally.

3.

Within the near tag, Term is a term tag, and Clause is a phrase, exact, and, or, orNear, near,
range, resultData, or not tag.

It should also be noted that, when applied to the “text” field, if the value specified for the slop
attribute exceeds the maximum proximity for the index being used, the maximum proximity
value will be used instead. There is no limit on the slop attribute when applied to meta-data
fields.
If the field is “text”, a Section Type sub-query may optionally appear, restricting this query to
particular sections of a document based on section types added by the Pre-Filter stylesheet at
index time.

Range Tag: <range>

This tag matches any words that fall within the range specified by the specified first and last
term. It has the form:

<range {inclusive = "YesOrNo"}
 {numeric = "YesOrNo"}
 {field = "FieldName"}
 {maxSnippets = "SnippetsToOutput"}
 {boost = "BoostValue"}>

 <lower>FirstTermToFind</lower>
 <upper>LastTermToFind</upper>

 {OptionalSectionTypeQuery}

</range>

where

inclusive=“YesOrNo”
is an optional attribute that specifies whether the range
should include the first and last term when matching. If not
specified, this attribute defaults to yes.

numeric=“YesOrNo”

is an optional attribute that specifies whether the data in the
field is numeric and in a rigid consistent format. If set to
yes, upon the first range query on the field, XTF will read
into memory a table of all the data values, converting them
to 64-bit integers; subsequent queries can then be
processed extremely efficiently. If this attribute is set to no,
the query is much more tolerant of variable formatting in
the data; XTF will expand the range query into a multi-term

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

43 of 66 3/15/2011 9:04 AM

OR (just like a wildcard query.) However, for some types
of data, wildcard expansion can result in too many terms
for the engine to handle. If not specified, this attribute
defaults to no.

field=“FieldName”

is an optional attribute that identifies which field in the
index to search. Often this attribute is set to text to indicate
that the main text of the document should be searched. It
can also be set to the name of a meta field such as author or
subject. It should be mentioned that if the field attribute
appears in any tags outside it, the field name in the
<range> tag must match the value set in the outer tags.
Otherwise, an error will be generated. (Note: Allowing
nested copies of the maxSnippets attribute doesn’t serve a
purpose other than to make it easier to write
docReqParser.xsl stylesheets in a uniform way.
Effectively, the outermost maxSnippets value is always
used.)

maxSnippets=“SnippetsToOutput”

is an optional attribute that identifies the number of
snippets to pass on to the Result Formatter stylesheet for
display. A snippet is defined as the matching text found in a
document for a particular query, along with some additional
text around it for context. The amount of context displayed
for each match is defined by the maxContext attribute. If
not specified this attribute defaults to 3, meaning snippets
for the top three matches for a document are returned.
Also, this attribute can be set to -1, meaning all the snippets
for a document are returned. As with the field attribute, if
the maxSnippets attribute appears in any containing tags,
the value set for it in the <range> tag must match the value
set in the containing tags. Otherwise, an error will be
generated. (Note: Allowing nested copies of the
maxSnippets attribute doesn’t serve a purpose other than to
make it easier to write docReqParser.xsl stylesheets in a
uniform way. Effectively, the outermost maxSnippets value
is always used.)

boost=“BoostValue”

is an optional attribute that specifies a relevance boost
multiplier for this clause in the query. Boost values higher
than 1.0 increase the relevance of a clause, while boost
values between 0.0 and 1.0 decrease the relevance of a
clause. Boost values less than zero will generate an error.

FirstTermToFind is the first term in the range to find. Usually, this is a
starting number, date, or year.

LastTermToFind is the last term in the range to find. Usually, this is an
ending number, date, or year.

This tag returns a match for any word that lexicographically falls in the range specified by the
upper and lower tags. This tag is primarily used to search for a range of revision numbers, dates,
or years.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

44 of 66 3/15/2011 9:04 AM

If the field is “text”, a Section Type sub-query may optionally appear, restricting this query to
particular sections of a document based on section types added by the Pre-Filter stylesheet at
index time.

Section Type Tag: <sectionType>

This tag modifies other queries, causing them to apply to only certain portions of the full text of a
document. It has the form:

<sectionType>

 Term | Clause

</sectionType>

This tag may only be used within another query, and has the effect of limiting that query to
search only those parts of the full document text whose sectionType attributes match the
specified term or clause. The sectionType tag is only allowed within queries on the “text” field.
XTF evaluates the specified term or clause against the section type attributes recorded at index
time by the Pre-Filter stylesheet using the xtf:sectionType attribute.

For example, if one wanted the option to only search the chapter headings of all books in a
repository, then the pre-filter would be modified to mark all the headings with
xtf:sectionType=”heading”, and then a sectionType tag would be added within the main text
query, containing term tag on the word “heading”.

Within the sectionType tag, Term is a term tag, and Clause is a phrase, exact, and, or, orNear,
near, range, resultData, or not tag.

Facet Tag: <facet>

This tag specifies a facet for which to count hits and form groups, and optionally to gather
document hits. This tag has the form:

<facet field = "FieldName"
 {select = "GroupsToSelect"}
 {sortGroupsBy = "SortKind"}
 {sortDocsBy = "ListOfMetaFields|score|totalHits"}
 {includeEmptyGroups = "YesOrNo"} />

where

field=“FieldName”

is a required attribute that identifies which meta-data
field in the index for which to count and build groups.
(Note: Meta tags to be used for faceted queries should
also have an xtf:tokenize=”no” attribute set, or sorting
will produce unpredictable results.)

select=“GroupsToSelect”

is an optional attribute specifying a subset of groups to
select and return in the query result. For maximum
flexibility, this specification is made using a special
language that resembles XPath to some extent. It allows
selecting groups by name or position in the list, and
supports various operations on hierarchical meta-data.
See examples below. If this attribute is not specified, it

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

45 of 66 3/15/2011 9:04 AM

defaults to: *

sortGroupsBy=“TotalDocsOrValue”

is an optional attribute telling XTF the order in which to
sort groups.

If set to “totalDocs” (or not set), groups will be
sorted in decreasing order of the total number of
documents per group.
If set to “value”, groups will be sorted in increasing
order by the value (i.e. name) of the facet group.
“reverseValue” is also supported.
If set to “maxDocScore”, groups will be sorted in
decreasing order by their relevance score
(relevance judged in relation to the main query.)

sortDocsBy=
“ListOfMetaFields|score|totalHits”

is an optional attribute specifying a list of meta fields by
which to sort the results. The list should consist of a
quoted string containing one or more meta-field names,
separated by commas. If multiple meta-fields are
specified, the results are sorted first by the leftmost
meta-field, then sub-sorted by subsequent fields to
produce the final output. Optionally, each meta-field
name can be preceded by a plus sign (+) or a minus sign
(-) to indicate whether the results for that field should be
sorted in ascending or descending order. If no plus or
minus sign is specified for a meta-field, then the results
are sorted in ascending order by default.

An additional option is available: setting this attribute to
“totalHits” will order the results by descending number of
hits within each document. That is, a document with more
hits will appear before one with fewer hits, regardless of
the quality of those hits.

If this attribute is not specified, documents are by default
sorted in order of decreasing score (so the most
“relevant” documents are first.) This default behavior can
also be explicitly set by providing a value of “score” (or
synonym “relevance”).

(Note: Meta tags to be used for sorting should also have
an xtf:tokenize=”no” attribute set, or sorting will produce
unpredictable results.)

includeEmptyGroups=“YesOrNo”

is an optional attribute that specifies whether to include
empty groups in the results. If set to “yes”, empty groups
will be included. If set to “no” they will be excluded. If
this attribute is not specified, it defaults to “no.”

The <facet> tag enables counting and grouping for a single meta-data field. First, XTF scans the
index and forms a table of all the possible values of that field. Then the query is performed as
normal, as each document hit is encountered, XTF looks up that document’s value in the table
and increments the count for it. If enabled in the selection specification, a list of the document
hits for each value is also accumulated.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

46 of 66 3/15/2011 9:04 AM

After the counting is completed, XTF sorts them, removes empty groups if enabled, and then
applies the group selection specification (from the select attribute) to decide which groups to
send to the Result Formatter stylesheet. For more information on the selection process, see the
Group Selection section of the XTF Programmer’s Guide. The final selected groups will appear
within a Facet Result tag in the results.
Note that only one facet query is allowed per meta-data field. Trying to specify more than one
will result in an error message.

Some examples of the select attribute:

 *[1-5]
 Politics#all
 **[topChoices]
 US::Berkeley#all|US::*
 History#all|**[selected][page(size=5)]

For more information, refer to the Group Selection section of the XTF Programmer’s Guide.

Spellcheck Tag: <spellcheck>

This tag specifies that the Text Engine should evaluate whether terms of the query were likely
misspelled, and to suggest likely correction(s) for each term. This tag should appear directly
within a Query Tag.

<spellcheck {fields = "FieldNames" }
 {docScoreCutoff = "MaxDocScore"}
 {totalDocsCutoff = "MaxDocCount"}/>

where

fields=“FieldNames”

is an optional attribute that restricts spelling correction to
the specified set of fields. The field names can be
separated by commas, semicolons, pipe symbols (|), or
spaces. If not specified, or if set to the special value #all,
then all tokenized fields in the index will be checked for
spelling (including the special field text which contains all
words not marked as meta-data.) Specifying a subset of
fields can speed up query processing if the Query Parser
stylesheet introduces extra fields that the user didn’t
explicitly type, and thus needn’t be checked for spelling.

docScoreCutoff=“MaxDocScore”

is an optional attribute that controls whether XTF
performs spelling correction. If any document resulting
from the query scores higher than this number, no
correction will be performed. If not specified, this
attribute defaults to 0.0, which disables the score cutoff.

totalDocsCutoff=“MaxDocCount”

is an optional attribute that controls whether XTF
performs spelling correction. If the number of documents
resulting from the query exceeds this number, spelling
correction will not be performed. If set to zero, the
document count cutoff is disabled (correction will always
be considered.) If not specified, this attribute defaults to
10, meaning that if less than 10 documents are found by a
query, spelling correction is applied.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

47 of 66 3/15/2011 9:04 AM

If spelling corrections are found, the Result Formatter stylesheet will receive a Spelling Result
tag.

Result Data Tag: <resultData>

This tag allows the Query Parser stylesheet to pass arbitrary data on to the Result Formatter
stylesheet. XTF will not attempt to interpret the contents of the tag, but simply passes the tag and
its contents through unchanged into the Query Result Tag. This tag may appear anywhere within
a query.

<resultData>

 YourDataHere

</resultData>

XTF will pass the tag and its contents unchanged to the result formatter.

More Like Tag: <moreLike>

This tag specifies that XTF should locate documents “similar” to a given document, where many
of the similarity parameters can be controlled. This tag has the form:

<moreLike fields = "FieldList"
 {boosts = "BoostFactorList"}
 {minWordLen = "MinWordLength"}
 {maxWordLen = "MaxWordLength"}
 {minDocFreq = "MinDocFrequency"}
 {maxDocFreq = "MaxDocFrequency"}
 {minTermFreq = "MinTermFrequency"}
 {termBoost = "ShouldBoostTerms"}
 {maxQueryTerms = "MaxQueryTerms"}>

 DocumentQuery

</moreLike>

where

fields="FieldList"

is a required attribute naming all of the fields that XTF
should search for “interesting” terms. The field names
may be separated by spaces, commas, semicolons, or
pipe symbols “|”. For best performance, this list should
be kept relatively small, and concentrate on fields of
most interest to users, such as title, author, subject, etc.
Note that XTF currently does not support using the
special field name text to search the full document text
for interesting terms, and behavior is undefined if you
specify this as a field name.

boosts="BoostFactorList"

is an optional attribute specified exactly one boost factor
for each field listed in the fields attribute. Each boost
factor should be a non-negative decimal number, and is
multiplied into the scoring for all terms from the given
field. For example, a boost factor of 0.5 will reduce the
score for terms by half, while a factor of 2.0 will double

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

48 of 66 3/15/2011 9:04 AM

the score. In general, the boost factor is very useful in
adjusting the weight that various fields have on selecting
similar documents. For instance, if one decided that the
title should be twice as important as author and subject,
the fields attribute might be “title,author,subject” and the
boosts attribute would be “2.0,1.0,1.0″. If not specified,
the boost factor for all fields in the fields list is set to 1.0.

minWordLen="MinWordLength"

is an optional attribute that limits the length of terms
from the source fields that will be considered for
similarity matching. Terms shorter than the specified
number of characters will be disregarded. This can speed
up processing and improve results by getting rid of
useless words. If not specified, this attribute defaults to 4.

maxWordLen="MaxWordLength"

is an optional attribute that limits the length of terms
from the source fields will be considered for similarity
matching. Terms longer than the specified number of
characters will be disregarded. This can speed up
processing and improve results by getting rid of useless
words. If not specified, this attribute defaults to 12.

minDocFreq="MinDocFrequency"

is an optional attribute that helps select which terms from
source fields will be considered for similarity matching.
In particular, terms that appear in fewer than the
specified number of documents will be discarded. This
can speed processing and improve results by discarding
highly unusual terms. If not specified, this attribute
defaults to 2.

maxDocFreq="MaxDocFrequency"

is an optional attribute that helps select which terms from
source fields will be considered for similarity matching.
In particular, terms that appear in more than the specified
number of documents will be discarded. This can speed
processing and improve results by discarding very
common terms. If not specified, this attribute defaults to
-1, meaning that there is no limit at all.

minTermFreq="MinTermFrequency"

is an optional attribute that helps select which terms from
source fields will be considered for similarity matching.
In particular, if the term occurs in the original field less
than the specified number of times, it will be discarded.
This can help choose more relevant terms by
concentrating on those that are repeated in the field. If
not specified, this attribute defaults to 1.

termBoost="ShouldBoostTerms"

is an optional attribute controls whether the similarity
engine should calculate and attach a boost factor to each
term. This factor will be equal to the score that was
calculated for that term, and serves to make more
important terms select documents more specifically. In
general, it’s best to leave this at the default value, which
is true.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

49 of 66 3/15/2011 9:04 AM

maxQueryTerms="MaxQueryTerms"

is an optional attribute that controls how many
“interesting” terms are selected from the original
document’s fields. Generally, this should be chosen to
balance speed (more terms take longer to process) vs.
quality (more terms can result in higher quality results,
up to a point.) If not specified, this attribute defaults to
10.

Within the moreLike tag, DocumentQuery is a normal XTF query that results in a single
document. That document’s fields will be scanned, and each term will be scored for
“interestingness” subject to the attributes above. Those terms that rank highest will be combined
into a new <orNear> query, and the results will be documents that are similar to the original
document selected by DocumentQuery.

All Docs Tag: <allDocs>

This special query tag matches all of the documents in the index. Doing this can be useful in
conjunction with faceted browsing, in order to explore the entire collection rather than a subset
of it. This should appear within a <query> element, and has the form:

<allDocs/>

Search Result Formatter

Input Tags

The following tags make up the XML input for the Search Result Formatter stylesheet. They constitute
a simple XML representation of the matching text found for the most recent query. The Search Result
Formatter stylesheet uses these input tags to generate the HTML for the actual search result web-page
viewed by the user. The root tag is <crossQueryResult>.

<crossQueryResult>
<docHit>
<meta>
<snippet>

<hit>
<term>
<explanation>
<facet>
<group>

<spelling>
<suggestion>

Query Result Tag <crossQueryResult>

This tag is the outermost container tag for the results produced by the crossQuery servlet. It has
the form:

<crossQueryResult queryTime = "TimeInSeconds"
 totalDocs = "NumberOfDocs"
 startDoc = "FirstDocNumber"

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

50 of 66 3/15/2011 9:04 AM

 endDoc = "LastDocNumber">

 Parameters
 Query

 Spelling <!-- if spelling corrections requested and applicable -->

 DocumentHit
 DocumentHit
 …

 FacetResult <!-- if facets were queried -->

 FacetResult

</crossQueryResult>

where

queryTime=“TimeInSeconds” is the amount of time, in seconds, that the servlet spent parsing
the query, processing it, and gathering the results.

totalDocs=“NumberOfDocs” is the number of documents that had matches for the specified
query.

startDoc=“FirstDocNumber”

is the sequential document number for the highest ranking
document returned by the current Query. Note that this may not
be the overall highest ranking document if a paged query was
specified. See the query tag for more details about performing
paged queries.

endDoc=“LastDocNumber”

is the sequential document number for the lowest ranking
document match returned by the current query. Note that this
may not be the overall lowest ranking document if a paged
query was specified. See the query tag for more details about
performing paged queries.

and

Parameters is the same <parameters> block that was sent to the Query Parser stylesheet

Query
is the query block that was output by the Query Parser stylesheet, included for
reference. This <query> block and the <parameters> block may be useful to the
Search Result Formatter stylesheet in formulating its output.

Spelling

is a tag that will appear only if spell checking was enabled in the query, and a
spelling correction dictionary was created at index time (i.e. enabled in
textIndexer.conf), and the engine detected likely misspelled words and suitable
suggested replacements. See the Spelling Correction Result Tag tag for more
information.

DocumentHit
is one or more tags, one per document in which search hits were found. These
tags contain specific hits for each document. See the Document Hit Tag

FacetResult
is a tag that will be included only if a facet query was performed. These tags will
contain grouped counts of the matching documents. See the Facet Result Tag for
more information.

Document Hit Tag <docHit>

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

51 of 66 3/15/2011 9:04 AM

This tag identifies a document containing one or more matches for the current query. This tag has
the form:

<docHit rank = "DocRelevanceRank"
 path = "DocumentLocation"
 score = "DocRelevanceScore">

 DocumentMetaData

 Snippet
 Snippet
 …

 {ScoreExplanation}

</docHit>

where

rank=“DocRelevanceRank”

is the ordinal ranking of this matching document, with 1 being
the most relevant document for a query. Note that this is an
absolute ranking for the document with respect to the entire
query, and not a page relative ranking. For more information
about paged queries, see the query tag.

path=“DocumentLocation” is the file path and name for the matching document. This path is
relative to the base XTF directory (i.e., XTF_HOME.)

score=“DocRelevanceScore”

is the document relevance score ranging from 0% to 100%. The
document with the highest overall relevance will receive a score
of 100%, and less relevant documents will receive lower scores.
Note that this score is an overall relevance score and is not
affected by paging. For information about paged queries, see the
query tag.

Document MetaData
is a tag which contains the meta-data for the matching
document. See the Document Meta-Data Tag for more
information.

Snippet
are tag(s) that contain the text of individual hits within the
document, along with surrounding context, as requested in the
query. See the Snippet Tag for more information.

Score Explanation

are tags only present if score explanation was requested in the
query. These tags detail how the textEngine calculated the score
for this document. See the Score Explanation Tag for more
information.

Document Meta-Data Tag <meta>

This tag identifies a block of meta-data for a matching document. This tag has the form:

<meta>
 …
</meta>

The actual tags within the meta-data block will depend on the implementation of the Pre-Filter
used by the textIndexer. However, any matches found in the meta-data will be marked with
Snippet or Hit tags, depending on what the query specified (snippets by default.).

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

52 of 66 3/15/2011 9:04 AM

The document meta-data tag is always included in the query results, regardless of whether there
are any matches in it or not. This guarantees that the result formatter has access to the title of the
document and other document related information in addition to the match results.

Snippet Tag <snippet>

This tag contains a snippet of text associated with a match found in a document. The snippet
consists of the text matched along with some context text around it. This tag has the form:

<snippet rank="MatchRelevanceRank" score="MatchRelevanceScore">

 Hit Text (and context text, if any)

</snippet>

where

rank=“MatchRelevanceRank”

is the ordinal ranking of this match in the current document,
with 1 being the most relevant match in the document. Note
that this is an absolute ranking for the match with respect to
the entire document, and not a page relative ranking. For more
information about paged queries, see the query tag.

score=“MatchRelevanceScore”

is the relevance score for this match ranging from 0% to
100%. The snippet with the highest overall relevance will
receive a score of 100%, and less relevant snippets will
receive lower scores. Note that this score is an overall
relevance score and is not affected by paging. For information
about paged queries, see the query tag.

The amount of context text displayed in a snippet is determined by the query tag in the original
query. If the context length specified is less than the matched text, then only the matched text
will be displayed.

Within the snippet itself, each matching word from the query will be marked with a single term
tag, and the matching text around which the context text is centered on will also be marked with
a single hit tag.

Hit Tag <hit>

This tag identifies actual matched text within the context text of a snippet tag. This tag has the
form:

<hit>
 …
</hit>

A hit may contain one or more matched words, which are separately marked with term tags.

If the original query used a near or and clause, the hit tag will mark the entire range of text
between the first and last word found for the clause. For example, for a “man” near “war” query,
the result would look like this:

<snippet rank="3" score="86">

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

53 of 66 3/15/2011 9:04 AM

 that <hit><term>man</term> had never actually been
 to <term>war</term></hit>, but he spoke as if he had

</snippet>

For an OR query, if multiple matched words exist in the snippet, all the matched words will be
marked with Term tags, but only the word that this snippet is centered around will be marked
with a hit tag.

Term Tag <term>

This tag identifies a word in a document that matches one of the terms in the query. This tag has
the form:

<term>
 MatchedWord
</term>

A term tag may or may not be inside a hit tag, depending on whether the occurrence of the
matched word is within the primary match for a snippet, or simply another occurrence within the
context text.

Explanation Tag <explanation>

This optional tag contains an explanation of how the score used to rank a document hit was
calculated. This tag has the form:

<explanation value="Score" description="Description">

 <explanation...>

 <explanation...>
 ...

</explanation>

where

Score is a floating-point number calculated by XTF
Description is a brief, technical description of how this score value was calculated.

To further describe the score, there may be one or more nested <explanation> elements which
break down the score’s components, and they may have their own nested explanations in turn.

Score explanations are enabled by setting the explainScores attribute of the Query Tag produced
by the Query Parser stylesheet. In the default XTF stylesheets, one can simply add
&explainScores=1 to the query URL.

Facet Tag <facet>

This tag identifies and contains the results for counting/grouping on one facet (or meta-data
field). One copy of this tag will be sent into the Result Formatter for each Facet Query Tag
specified in the query. It will appear within a Query Result Tag container. It has the form:

<facet field = "FieldName"
 totalGroups = "NumberOfGroups"

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

54 of 66 3/15/2011 9:04 AM

 totalDocs = "NumberOfDocs">

 GroupResult
 GroupResult
 …

</facet>

where

field=“FieldName” is the name of the meta-data field for which faceted data is
being reported.

totalGroups=“NumberOfGroups”

is the number of groups groups this facet contains (which
may be more than are selected and returned as
GroupResults.) In the case of a hierarchical facet, this is
actually a count of the top-level groups only.

totalDocs=“NumberOfDocs” is the number of documents that had matches for the
specified query and had a value for this facet.

If any groups matched the group selection in the Facet Query Tag, then one or more Group
Result Tags will appear as children of the Facet Result Tag.

Group Tag <group>

#crossQuery_ResultFormatter_Group?This tag identifies and contains the results for the count
(and possibly document hits) for a single group within a facet. One copy of this tag will be sent
into the Result Formatter for group selected by the Facet Query Tag specified in the query. The
Group Result Tag will appear within a Facet Result Tag container, or in the case of a hierarchical
facet, may appear inside another Group Result Tag. It has the form:

<group value = "GroupValue"
 rank = "GroupSortedRank"
 totalSubGroups = "NumOfSubGroups"
 totalDocs = "NumberOfDocs"
 startDoc = "FirstDocNumber"
 endDoc = "EndDocNumber">

 GroupResult <!-- if facet is hierarchical -->
 GroupResult
 …

 DocumentHit <!-- if document hits were requested -->
 DocumentHit
 …

</group>

where

value=“GroupValue”
is the specific facet value of the group being reported.
One might also think of this as the “name” of the
group.

rank=“GroupSortedRank”
is the ordinal ranking of this group within the set of
groups at this level, with 1 being the first in sort order.
Note that this is an absolute ranking for the group with

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

55 of 66 3/15/2011 9:04 AM

respect to the entire set, and not a page relative
ranking. For more information about paging groups, see
the Group Selection section of the XTF
Programmer’s Guide.

totalSubGroups=“NumOfSubGroups”

is, for a hierarchical facet, the number of sub-groups
this group contains, which may be more than were
actually selected and returned. For a non-hierarchical
facet, this will always be zero.

totalDocs=“NumberOfDocs”
is the number of documents that had matches for the
specified main query and had GroupValue in the facet
field.

startDoc=“FirstDocNumber”

is the sequential document number for the highest
ranking document match reported for the current
group. Note that this may not be the overall highest
ranking document if a paged query was specified. See
the Group Selection section of the XTF
Programmer’s Guide for more details about paging
documents.

endDoc=“LastDocNumber”

is the sequential document number for the lowest
ranking document match reported for the current
group. Note that this may not be the overall lowest
ranking document if a paged query was specified. See
the Group Selection section of the XTF
Programmer’s Guide for more details about paging
documents.

If any groups matched the group selection in the Facet Query Tag, then one or more Group
Result Tags will appear as children of the Facet Result Tag. If the facet is also hierarchical,
Group Result Tags may contain nested Group Result Tags for sub-groups. If any document hits
were selected, then one or more Document Hit Tags will also be included.

Spelling Tag <spelling>

This tag contains the suggestions resulting from spelling correction performed on a user query. It
will only appear directly within a Query Result tag.

<spelling>

 SpellingSuggestion
 SpellingSuggestion
 …

</spelling>

Within the Spelling Tag, one ore more Spelling Suggestion tags will appear, one for each
potentially misspelled term in the original query submitted to the engine.

Note that this tag will only appear if spell checking was enabled in the query, and a spelling
correction dictionary was created at index time (i.e. enabled in textIndexer.conf), and the engine
detected likely misspelled words and suitable suggested replacements.

Spelling Suggestion Tag <suggestion>

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

56 of 66 3/15/2011 9:04 AM

This tag contains a spelling suggestion for a single term from the original query submitted to the
Text Engine. It will appear directly within a Spelling Correction Result tag.

<suggestion origTerm = "OriginalWord"
 suggestedTerm = "ReplacementWord"/>

where

origTerm=“OriginalWord” is the (potentially) misspelled term found in the original
query.

suggestedTerm=“ReplacementWord”

is the best correction that the spelling engine could find
for the original term. This may be two words if the
original word should be split (e.g. “harrypotter” ->
“harry potter”). This may be an empty string, indicating
that the original word should be removed from the query
(e.g. “usa” “bility” -> “usability” “empty”

Error Generator

The purpose of the Error Generator stylesheet is to generate a web-page that displays user friendly
messages when crossQuery errors occur. Since this stylesheet works the same way in both dynaXML and
crossQuery, it is documented in the common Error Generator Stylesheets section.

dynamXML

return to top

Document Request Parser

Document Request Parser Input Tags and Parameters

The XML input fragment passed to the Document Request Parser stylesheet forms a simple XML
representation of the document request URL supplied to the dynaXML servlet from either a document
catalog web-page or a crossQuery search result web-page. The XML input and XSL parameters are the
same as those for the crossQuery Query Parser, and are documented in the Common Parser Input
Tags and Common Stylesheet Parameters pages.

Output Tags

The following tags form the output from a dynaXML Document Request Parser stylesheet. The parser
is required to output a document request in the form of at least a <style> tag and an <auth> tag, and
optionally other tags as outlined below. This XML request is then passed to the dynaXML servlet’s
document retrieval engine for processing.

<style>

<source>
<brand>
<index>
<query>

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

57 of 66 3/15/2011 9:04 AM

Public Authentication
IP List Authentication

LDAP Authentication
External Authentication

<style>

This tag identifies the location of the Document Formatter Stylesheet. It has the form:

<style path="DocFormatterLocation"/>

where

path=“DocFormatterLocation”

is the file path and name for the Document Formatter
stylesheet to use for the requested document. If this path is not
specified as an absolute path, it is assumed to be relative to the
base XTF installation directory (i.e., XTF_HOME.)

<source>

This tag identifies the location of the document to be retrieved. It has the form:

<source path="SrcDocLocation"/>

where

path=“SrcDocLocation”
is the file path and name for the document to be retrieved. If this path
is not specified as an absolute path, it is assumed to be relative to the
base XTF installation directory (i.e., XTF_HOME.)

<brand>

This tag identifies a file that contains a list of site-specific parameters to be passed on to the
document formatter. It has the form:

<brand path="BrandStylesheetLocation"/>

where

path=“BrandStylesheetLocation”

is the file path and name for the brand file to use. If this path
is not specified as an absolute path, it is assumed to be
relative to the base XTF installation directory (i.e.,
XTF_HOME.)

This contents of the branding file is a set of parameter definitions of the form:

<name>value</name>
<name>value</name>
…

These parameters are most often used to pass “branding” information to the Document
Formatter stylesheet (e.g., background color to use, cascading stylesheet to use, font to use,
etc.)

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

58 of 66 3/15/2011 9:04 AM

<index>

This tag identifies the index to use for lazy loading of text, and for marking search hits in a
document. It has the form:

<index configPath="TextIndexerConfigLocation" name="IndexName"/>

where

configPath=“TextIndexerConfigLocation”

is the file path and name for the textIndexer config
file. If this path is not specified as an absolute
path, it is assumed to be relative to the base XTF
installation directory (i.e., XTF_HOME.)

name=“IndexName”
is the name of the index to use. This index name
must exist in the config file specified by the
configPath attribute above.

This tag is required if the document request passed to the dynaXML servlet will include a query
tag. Using the query tag in a document request without an index tag will result in an Unsupported
Query Error being sent to the Error Generator stylesheet.

Placing this tag in a document request will also enable lazy loading of the requested document
(i.e., portions of the document are loaded only when viewed by the user.) Using lazy loading can
substantially increase the responsiveness of the XTF system for libraries of large documents.

<query>

This tag is a container tag for a crossQuery style query. It has the form:

<query>

 crossQuery-Style Query Tags

</query>

where crossQuery-Style Query Tags are any of the query tags outlined in the Query Parser
Output Tags section. Note however that the dynaXML query tag doesn’t use the attributes
available for the crossQuery query tag.

Including a query in the document request allows the dynaXML servlet to mark query hits in
context in the original document. Then, the Document Formatter stylesheet can opt to provide
quick links to the hits or to simply highlight them in context.

Note: If a query tag is used in a document request, the index tag must also be present in the
document request. If the index tag is not present in the document request, an Unsupported Query
error will be sent to the Error Generator stylesheet.

Public Authentication

This variant of the authentication tag is used to provide or deny full public access to documents.
It has the form:

<auth access="AllowOrDeny" type="all"/>

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

59 of 66 3/15/2011 9:04 AM

where

access=“AllowOrDeny” specifies whether all users should be allowed access (access=”allow”)
or denied access (access=”deny”) to the requested document.

Allowing access to all users with this tag can be used when no special authorization is required to
access on-line documents.

Note: One or more auth tags must exist in the Document Request Parser stylesheet. These tags
will be processed in the order they are encountered until one of them authorizes or denies access.
If none of the authentication tags explicitly authorize or deny access, the dynaXML servlet will
deny access by default.

IP List Authentication

This variant of the authentication tag is used to provide access to documents based on the user’s
IP address. This tag provides simple (but not particularly robust) authorization for document
access. It has the form:

<auth access="AllowOrDeny" type="IP" list="LocationOfIPList"/>

where

access=“AllowOrDeny”
specifies whether addresses in the IP list should be allowed access
(access=”allow”) or denied access (access=”deny”) to the requested
document.

list=“LocationOfIPList”

specifies the path and filename of a list of IP addresses to allow or
deny access. If not specified as an absolute path, this path is
assumed to be relative to the XTF base install directory (i.e.,
XTF_HOME.) To learn about the format of the IP List file, see the
XTF Deployment Guide.

Note: One or more auth tags must exist in the Document Request Parser stylesheet. These tags
will be processed in the order they are encountered until one of them authorizes or denies access.
If none of the authentication tags explicitly authorize or deny access, the dynaXML servlet will
deny access by default.

LDAP Authentication

This variant of the authentication tag is used to provide access to documents based on an LDAP
database. It has the form:

<auth access = "allow"
 type = "LDAP"
 server = "LDAPServerURL"
 realm = "PswdRequestDescr"
 {bindName = "LDAPConnectName"}
 {bindPassword = "LDAPConnectPswd"}
 {queryName = "LDAPRecordNameToFind"}
 {matchField = "LDAPFieldToFind"}
 {matchValue = "LDAPValueToMatch"}/>

where

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

60 of 66 3/15/2011 9:04 AM

server=“LDAPServerURL” identifies the location of the LDAP server to use.

realm=“PswdDialogDescr” is a string to display in the browser dialog box that asks
for the user’s name and password.

bindName=“LDAPConnectName”

is an optional attribute specifying the name to use when
connecting to the LDAP server. If this attribute is
omitted, then an anonymous LDAP connection will be
attempted. If anonymous connections are permitted by
the LDAP database, then the bindPassword attribute
should also be omitted, and the queryName attribute
must be present for user authentication to proceed. For
anonymous LDAP access the matchField and
matchValue attributes are optional. If the name passed
for this attribute is the LDAP administrator name, then
the bindPassword attribute must be set to the LDAP
administrator password, and the queryName must also
be present for user authentication to proceed. For
administrative LDAP access, the matchField and
matchValue attributes are optional. It should also be
noted that the user name will be substituted for any
occurrence of the % symbol in this attribute. Doing so
allows connections with the LDAP database to be
established using the user name instead of an LDAP
administrator name. Finally, if successfully connecting
to the LDAP database with a user name and password
is all that is required for authentication, then no other
attributes need to be specified in the authentication tag.
Otherwise, the queryName attribute and optionally the
matchField and matchValue attributes may be specified
to complete the authentication request.

bindPassword=“LDAPConnectPswd”

is an optional attribute specifying the password to use
when connecting to the LDAP server. If an anonymous
LDAP connection is being performed (i.e, the
bindName attribute has not been specified), this
attribute should also not appear in the authentication
tag. If the bindName attribute specifies the LDAP
administrator name, this attribute must be set to the
LDAP administrator password. Finally, the user
password will be substituted for any occurrence of the
% symbol in this attribute. Doing so allows connections
with the LDAP database to be established using the
user password instead of an LDAP administrator
password.

queryName=“LDAPRecordToFind”

is an attribute identifying the name of an LDAP record
to find. If an anonymous or administrator connection to
the LDAP server is being attempted, this attribute is
required. For user connections, this attribute is optional.
As with the bindName attribute, the user name will be
substituted for any occurrence of the % symbol in this
attribute. Doing so allows connections with the LDAP

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

61 of 66 3/15/2011 9:04 AM

database to be established using the user name instead
of an LDAP administrator name. Also, if the
queryName attribute is specified without the matchField
or matchValue attributes, then user authentication will
succeed if the given record name simply exists in the
LDAP database. If the given record is not in the LDAP
database, authentication will fail.

matchField=“LDAPFieldToFind”

is an attribute identifying the name of a field to find in
the LDAP record named by the queryName attribute.
Note that the matchField attribute should not be used if
the queryName attribute hasn’t been specified. Like the
queryName attribute, the user name will be substituted
for any occurrence of the % symbol in this attribute.
Doing so allows connections with the LDAP database
to be established using the user name instead of an
LDAP administrator name. Finally, if the matchField
attribute is specified without the matchValue attribute,
then user authentication will succeed if the given field
name simply exists in the LDAP record. If the given
field name does not exist in the LDAP database
authentication will fail.

matchValue=“LDAPValueToMatch”

is an attribute that specifies the value that must exist in
the LDAP field named by the matchField attribute for
authentication to succeed. If the specified value doesn’t
match the LDAP field, user authentication will fail. As
with the previous attributes, the user’s password will be
substituted for any occurrences of the % symbol. Doing
so allows connections with the LDAP database to be
established using the user password instead of an LDAP
administrator password.

Note: One or more auth tags must exist in the Document Request Parser stylesheet. These tags
will be processed in the order they are encountered until one of them authorizes or denies access.
If none of the authentication tags explicitly authorize or deny access, the dynaXML servlet will
deny access by default.

External Authentication

This variant of the authentication tag is used to provide access to documents based on an external
authentication web-page or server. It has the form:

<auth access = "allow"
 type = "external"
 key = "SecretKeyStr"
 url = "AuthenticationURL"/>

Note: One or more auth tags must exist in the Document Request Parser stylesheet. These tags
will be processed in the order they are encountered until one of them authorizes or denies access.
If none of the authentication tags explicitly authorize or deny access, the dynaXML servlet will
deny access by default. For more details about external authentication, see the XTF Deployment
Guide.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

62 of 66 3/15/2011 9:04 AM

Document Formatter

The following tags and attributes are added by the dynaXML servlet to the original XML tags that make up
the requested XML document, which are then passed to the Document Formatter stylesheet for output
formatting.

Document Formatter Attributes

xtf:hitCount="NumberOfHitsBelowThisTag"
xtf:firstHit="FirstHitNumberBelowThisTag"

These attributes are added to XML documents to indicate where matched text hits are located. By providing
these tags, the dynaXML servlet allows the Document Formatter stylesheet to quickly determine if a section
of a document needs any special highlighting or not.

If the requested document has no hits, these attributes will appear once in the outermost tag for the document
with both the attributes set to zero. If the document has one or more hits, these attributes will appear for any
XML tag that has a hit inside it or inside its child tags.

Document Formatter Tags

<xtf:snippets>
<xtf:snippet>

<xtf:hit>
<xtf:more>
<xtf:term>

<xtf:snippets>

This tag is a container tag added to the start of the document when there are query results for the
document. It has the form:

<xtf:snippets>

 Snippet
 Snippet
 …

</xtf:snippets>

where each Snippet is a dynaXML snippet tag that summarizes one query match in the requested
document.

Note: The <snippets> tag is prefixed with the xtf: namespace to differentiate it from tags that came
from the original XML document.

<xtf:snippet>

This tag contains a snippet of text associated with a match found in the requested document. The
snippet consists of the text matched along with some context text around it. This tag has the form:

<xtf:snippet hitNum="HitNumber"
 rank="MatchRelevanceRank"

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

63 of 66 3/15/2011 9:04 AM

 score="MatchRelevanceScore">

 Hit Text (and context text, if any)

</xtf:snippet>

where

xtf:
is an XTF namespace prefix added to the tag to differentiate it from
tags that came from the original XML document. The namespace
URI for this prefix is: http://cdlib.org/xtf

hitNum=“HitNumber”
is the ordinal ID of the current hit. This attribute will also appear in
hit tags in the main text, allowing the hit number for the next or
previous in-context tag to be easily determined.

rank=“MatchRelevanceRank” is the ranking of this match in the current document, with 1 being the
most relevant match in the document.

score=“MatchRelevanceScore”
is the relevance score for this match ranging from 0% to 100%. The
snippet with the highest overall relevance will receive a score of
100%, and less relevant snippets will receive lower scores.

The amount of context text displayed in a snippet is determined by the query tag in the original query.
If the context length specified is less than the matched text, then only the matched text will be
displayed.

Within the snippet itself, each matching word from the query will be marked with a single Term Tag,
and the matching text around which the context text is centered on will also be marked with a single Hit
Tag.

<xtf:hit>

This tag identifies actual matched text in a snippet tag or in the main text for the requested document.
This tag has the form:

<xtf:hit hitNum = "HitNumber"
 rank = "MatchRelevanceRank"
 score = "MatchRelevanceScore"
 continues = "YesOrNo">

 …

</xtf:hit>

where

xtf:

is an XTF namespace prefix added to the tag to differentiate it from
tags that came from the original XML document. The prefix will not
be present in hit tags that appear within the initial snippets summary
tag, but only in hit tags that occur in the main text for the document.
The namespace URI for this prefix is: http://cdlib.org/xtf

hitNum=“HitNumber”
is the ordinal ID of the current hit. This attribute allows the hit
number for the next or previous in-context tag to be easily
determined.

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

64 of 66 3/15/2011 9:04 AM

rank=“MatchRelevanceRank” is the ranking of this match in the current document, with 1 being the
most relevant match in the document.

score=“MatchRelevanceScore”
is the relevance score for this match ranging from 0% to 100%. The
snippet with the highest overall relevance will receive a score of
100%, and less relevant snippets will receive lower scores.

continues=“YesOrNo”
indicates whether this hit continues into the next XML tag
(continues=”yes“) or not (continues=”no“). Note that when a hit
continues into the next XML tag, a More Tag will always follow.

A hit may contain one or more matched words, which are separately marked with Term Tags.

If the query in the document request included a near or and clause, the Hit Tag will mark the entire
range of text between the first and last word found for the clause. Also, within the main text, if the
entire range spans multiple XML tags in the document, the hit will be broken down into an initial Hit
Tag followed by one or more More Tags.

For summary snippets, if the query for the requested document includes an or clause, all the matched
words in the snippet will be marked with Term Tags, but only the word that the snippet is centered
around will be marked with a hit tag. Within the main text however, any term matched in the or clause
will be marked with both a Hit Tag and a Term Tag.

<xtf:more>

This tag identifies the continuation of a hit tag that started in a previous XML tag. This tag has the
form:

<xtf:more hitNum = "HitNumber"
 rank = "MatchRelevanceRank"
 score = "MatchRelevanceScore"
 continues = "YesOrNo">

 …

</xtf:more>

where

xtf:
is an XTF namespace prefix added to the tag to differentiate it from
tags that came from the original XML document. The namespace
URI for this prefix is: http://cdlib.org/xtf

hitNum=“HitNumber” is the ordinal ID of the hit to which this More Tag belongs.
rank=“MatchRelevanceRank” is the ranking of the hit to which this More Tag belongs.
score=“MatchRelevanceScore” is the relevance score of the hit to which this More Tag belongs.

continues=“YesOrNo”

indicates whether the associated hit continues into yet another
XML tag (continues=”yes“) or not (continues=”no“). Note that
when a hit continues into another XML tag, another more tag will
always follow.

A More Tag may contain one or more matched words, which are separately marked with Term Tags.

If the query in the document request included a near or and clause, and the entire range of the hits

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

65 of 66 3/15/2011 9:04 AM

spans multiple XML tags in the document, the More Tag will mark any parts of the range that occur in
subsequent XML tags.

<xtf:term>

This tag identifies a single word in the main text that matches a query associated with the requested
document. This tag has the form:

<xtf:term>MatchedWord</xtf:term>

where

xtf:

is an XTF namespace prefix added to the tag to differentiate it from tags that came from the
original XML document. The prefix will not be present in term tags that appear within the
initial snippets summary tag, but only in term tags that occur in the main text for the document.
The namespace URI for this prefix is: http://cdlib.org/xtf

Error Generator

The purpose of the Error Generator stylesheet is to generate a web-page that displays user friendly
messages when dynaXML errors occur. Since this stylesheet works the same way in both dynaXML and
crossQuery, it is documented on the common Error Generator Stylesheets page.

Edit this entry.

Latest XTF News

XTF 3.0 beta
XTF Website Launched
XTF Community Preview
XTF 2.2 released

Subscribe to XTF News

RSS

The eXtensible Text Framework (XTF) is supported by the California Digital Library

XTF » Tag Reference http://xtf.cdlib.org/documentation/tag-reference/

66 of 66 3/15/2011 9:04 AM

